

An Instant Optimal Adaptive Finite Element Method

Christian Kreuzer

joint work with L. Diening and R. Stevenson

European Finite Element Fair 2013, Heraklion, Crete

Outline

Framework

AFEM and Main Result

Proof of the Main Result

Framework

Poisson Problem:

Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain. For $f \in L^2(\Omega)$ find $u \in H^1_0(\Omega)$, such that

$$-\Delta u = f \qquad \text{in } H^{-1}(\Omega) \quad \text{and} \quad u = 0 \text{ on } \partial \Omega.$$

$$\mathcal{J}(u) := \int_{\Omega} \frac{1}{2} |\nabla u|^2 - fu \, \mathrm{d}x = \min \left\{ \mathcal{J}(v) \colon v \in H_0^1(\Omega) \right\}.$$

Finite Elements and Ritz Approximation

Continuous piece wise affine finite elements

$$\mathbb{V}(\mathcal{T}) := \{ V \in H_0^1(\Omega) \mid V_{|T} \in \mathbb{P}_1(T), \ T \in \mathcal{T} \}.$$

over conforming triangulation \mathcal{T} of Ω with nodes \mathcal{N} and edges \mathcal{S} .

$$U_{\mathcal{T}} \in \mathbb{V}(\mathcal{T}): \quad \int_{\mathcal{O}} \nabla U_{\mathcal{T}} \cdot \nabla V \, \mathrm{d}x = \int_{\mathcal{O}} fV \, \mathrm{d}x \quad \text{for all } V \in \mathbb{V}(\mathcal{T}).$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺

Error Estimation

Edge Based Residual Indicators

$$\text{For } S \in \mathcal{S} \text{ define } \qquad \mathcal{E}^2_{\mathcal{T}}(S) := \int_S h_S \left| [\![\nabla U \tau]\!] \right|^2 \ \mathrm{d}s + \sum_{\partial T \supset S} \int_T h_T^2 f^2 \, \mathrm{d}x$$

Error Bounds

$$|||u - U_{\mathcal{T}}|||_{\Omega}^{2} \lesssim \mathcal{E}_{\mathcal{T}}^{2}(\mathcal{S}) := \sum_{S \in \mathcal{S}} \mathcal{E}_{\mathcal{T}}^{2}(S) \lesssim |||u - U_{\mathcal{T}}|||_{\Omega}^{2} + \operatorname{osc}^{2}(\mathcal{T})$$

Discrete Error Bounds

Let $\mathcal{T}_* > \mathcal{T}$ be a refinement of \mathcal{T} . Then

$$|||U_{\mathcal{T}} - U_{\mathcal{T}_*}|||_{\Omega}^2 \lesssim \mathcal{E}_{\mathcal{T}}^2(\mathcal{S} \setminus \mathcal{S}_*) \lesssim |||U_{\mathcal{T}} - U_{\mathcal{T}_*}|||_{\Omega}^2 + \sum_{T \in \mathcal{T} \setminus \mathcal{T}_*} \int_T h_T^2 f^2 \, \mathrm{d}x$$

Christian Kreuzer An Instant Optimal AFEM

Refinement Framework

Admissible Triangulations

- ▶ Initial conforming Refinement \mathcal{T}_0 of Ω with refinement edges labeled as in [Binev, Dahmen, DeVore '04] or [Stevenson, 08].
- $ightharpoonup \mathbb{T} := \{ \mathcal{T} : \text{ conforming refinement of } \mathcal{T}_0 \text{ using NVB} \}$
- ▶ Refinement Routine: Let $\mathcal{T} \in \mathbb{T}$ with edges \mathcal{S} then, for $S \in \mathcal{S}$, let

$$\mathcal{T} \leq \mathcal{T}_* = \mathsf{REFINE}(\mathcal{T}, S) \in \mathbb{T},$$

be the **smallest** refinement of \mathcal{T} s.t. $S \notin \mathcal{S}_*$.

Complexity of REFINE [BDD '04], [Stevenson, 08]

Let $\mathcal{T}_0 = \mathcal{T}_0 < \mathcal{T}_1 \leq \mathcal{T}_2 \leq \ldots \subset \mathbb{T}$ such that for some $\mathcal{M}_k \subseteq \mathcal{S}_k$ we have

$$\mathcal{T}_{k+1} = \mathsf{REFINE}(\mathcal{T}_k, \mathcal{M}_k) \quad \Rightarrow \quad \#\mathcal{T}_k - \#\mathcal{T}_0 \lesssim \sum_{r \in I_k} \#\mathcal{M}_n$$

←□→ ←□→ ←□→ □

For
$$S \in \mathcal{S} = \mathcal{S}(\mathcal{T}), \mathcal{T} \in \mathbb{T}$$
, define $\operatorname{refined}(\mathcal{T}, S) := \mathcal{S} \setminus \operatorname{REFINE}(\mathcal{T}, S)$.

Accumulated Error Indicators

$$\bar{\mathcal{E}}_{\mathcal{T}}^2(S) := \mathcal{E}_{\mathcal{T}}^2(\mathsf{refined}(\mathcal{T},\,S)) \ \Rightarrow \ \| U_{\mathcal{T}} - U_{\mathcal{T}_*} \|_{\Omega}^2 + \sum_{T \in \mathcal{T} \backslash \mathcal{T}_*} \int_T h_T^2 f^2 \, \mathrm{d}x \simeq \bar{\mathcal{E}}_{\mathcal{T}}^2(S)$$

AFEM and Main Result

The Adaptive Finite Element Method (AFEM)

Choose $\mu \in (0,1]$ and set k=0.

SOLVE: compute $U_k \in \mathbb{V}(\mathcal{T}_k)$;

ESTIMATE: compute $\bar{\mathcal{E}}_{\max}^2(k) := \max \{\mathcal{E}_k^2(\mathsf{refined}(\mathcal{T}_k, S)) : S \in \mathcal{S}_k\};$

MARK: $\mathcal{M}_k := \emptyset$, $\mathcal{C}_k := \mathcal{S}(\mathcal{T}_k)$, $\widetilde{\mathcal{M}}_k := \emptyset$;

while $C_k \neq \emptyset$ do

select $S \in \mathcal{C}_k$;

if $\mathcal{E}_k^2(\mathsf{refined}(\mathcal{T}_k,\,S)\setminus\widetilde{\mathcal{M}}_k)\geq\mu\,\bar{\mathcal{E}}_{\max}^2(k);$

then $\mathcal{M}_k := \mathcal{M}_k \cup \{S\};$

 $\widetilde{\mathcal{M}}_k := \widetilde{\mathcal{M}}_k \cup \mathsf{refined}(\mathcal{T}_k, S);$

end if;

 $C_k := C_k \setminus \mathsf{refined}(\mathcal{T}_k, S);$

end while;

REFINE: compute $\mathcal{T}_{k+1} = \mathsf{REFINE}(\mathcal{T}_k, \mathcal{M}_k)$ and increment k.

The Main Result: Instant Optimality

Theorem [Diening, K., Stevenson 2013]

There exist constants $C=C(\mathcal{T}_0), \ \tilde{C}=\tilde{C}(\mathcal{T}_0,\mu)$, such that for $k,m\in\mathbb{N}$ with

$$\#\mathcal{T}_k - \#\mathcal{T}_0 \ge \tilde{C} m$$
,

we have

$$C\left(\left\|u - U_{\mathcal{T}}\right\|_{\Omega}^{2} + \operatorname{osc}^{2}(\mathcal{T})\right) \ge \left\|u - U_{\mathcal{T}_{k}}\right\|_{\Omega}^{2} + \operatorname{osc}^{2}(\mathcal{T}_{k})$$

for all $\mathcal{T} \in \mathbb{T}$ with $\#\mathcal{T} - \#\mathcal{T}_0 < m$.

Outline

Framework

AFFM and Main Result

Proof of the Main Result

Proof: Lower Diamond Estimate

Minimal Diamond

A set $(\mathcal{T}^{\wedge}, \mathcal{T}_{\vee}; \mathcal{T}^{1}, \dots, \mathcal{T}^{m})$ is called *minimal diamond*, if

- $lackbox{}{\mathcal{T}}^\wedge$ is the finest coarsening and
- $ightharpoonup \mathcal{T}_{\lor}$ is the coarsest refinement of $\mathcal{T}^1, \ldots, \mathcal{T}^m$.

Lower Diamond Estimate

Let $(\mathcal{T}^{\wedge}, \mathcal{T}_{\vee}; \mathcal{T}^{1}, \dots, \mathcal{T}^{m})$ be a minimal diamond, such that the sets $\Omega(\mathcal{T}^{j} \setminus \mathcal{T}_{\vee}) := \operatorname{interior} \bigcup \{T \in \mathcal{T}^{j} \setminus \mathcal{T}_{\vee}\}$ are pairwise disjoint. Then

$$\mathcal{J}(U_{\wedge}) - \mathcal{J}(U_{\vee}) = \frac{1}{2} |U_{\wedge} - U_{\vee}|_{H^{1}(\Omega)}^{2}$$
$$\simeq \frac{1}{2} \sum_{i=1}^{m} |U_{i} - U_{\vee}|_{H^{1}(\Omega_{j})}^{2} = \sum_{i=1}^{m} \mathcal{J}(U_{j}) - \mathcal{J}(U_{\vee})$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Proof: Lower Diamond Estimate

Minimal Diamond

A set $(\mathcal{T}^{\wedge}, \mathcal{T}_{\vee}; \mathcal{T}^{1}, \dots, \mathcal{T}^{m})$ is called *minimal diamond*, if

- $lackbox{}{\mathcal{T}}^\wedge$ is the finest coarsening and
- $ightharpoonup \mathcal{T}_{\lor}$ is the coarsest refinement of $\mathcal{T}^1, \ldots, \mathcal{T}^m$.

Lower Diamond Estimate

Let $(\mathcal{T}^{\wedge}, \mathcal{T}_{\vee}; \mathcal{T}^{1}, \dots, \mathcal{T}^{m})$ be a minimal diamond, such that the sets $\Omega(\mathcal{T}^{j} \setminus \mathcal{T}_{\vee}) := \operatorname{interior} \bigcup \{T \in \mathcal{T}^{j} \setminus \mathcal{T}_{\vee}\}$ are pairwise disjoint. Then

$$\mathcal{J}(U_{\wedge}) - \mathcal{J}(U_{\vee}) = \frac{1}{2} |U_{\wedge} - U_{\vee}|_{H^{1}(\Omega)}^{2}$$
$$\simeq \frac{1}{2} \sum_{i=1}^{m} |U_{j} - U_{\vee}|_{H^{1}(\Omega_{j})}^{2} = \sum_{i=1}^{m} \mathcal{J}(U_{j}) - \mathcal{J}(U_{\vee}).$$

イロト イボト イミト イコト

Proof: Total Energy

$$\text{For } \mathcal{T} \in \mathbb{T} \text{, we set:} \qquad \mathcal{G}(\mathcal{T}) := \mathcal{J}(U_{\mathcal{T}}) + \sum_{T \in \mathcal{T}} h_T^2 \|f\|_{L^2(T)}^2.$$

$$\mathcal{G}(\mathcal{T}) - \mathcal{J}(u) \simeq |U_{\mathcal{T}} - u|_{H^1(\Omega)}^2 + \operatorname{osc}^2(\mathcal{T})$$

$$\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_*) \simeq \mathcal{E}_{\mathcal{T}}^2(\mathcal{S} \setminus \mathcal{S}_*).$$

$$\mathcal{T}_m^{\mathrm{opt}} \in \mathbb{T}: \quad \mathcal{G}(\mathcal{T}_m^{\mathrm{opt}}) = \min \left\{ \mathcal{G}(\mathcal{T}) \colon \mathcal{T} \in \mathbb{T} \text{ mit } \#\mathcal{T} - \#\mathcal{T}_0 \le m \right\}$$

Proof: Total Energy

$$\text{For } \mathcal{T} \in \mathbb{T} \text{, we set:} \qquad \mathcal{G}(\mathcal{T}) := \mathcal{J}(U_{\mathcal{T}}) + \sum_{T \in \mathcal{T}} h_T^2 \|f\|_{L^2(T)}^2.$$

Properties

- $\mathcal{G}(\mathcal{T}) \mathcal{J}(u) \simeq |U_{\mathcal{T}} u|_{H^1(\Omega)}^2 + \operatorname{osc}^2(\mathcal{T}).$
- ▶ For \mathcal{T}_* being a refinement of \mathcal{T} , we have

$$\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_*) \simeq \mathcal{E}_{\mathcal{T}}^2(\mathcal{S} \setminus \mathcal{S}_*).$$

▶ The energy $\mathcal{G}: \mathbb{T} \to \mathbb{R}$ satisfies the lower diamond estimate.

$$\mathcal{T}_m^{\mathrm{opt}} \in \mathbb{T}: \quad \mathcal{G}(\mathcal{T}_m^{\mathrm{opt}}) = \min \left\{ \mathcal{G}(\mathcal{T}) \colon \mathcal{T} \in \mathbb{T} \text{ mit } \#\mathcal{T} - \#\mathcal{T}_0 \le m \right\}$$

4 D > 4 A > 4 B > 4 B >

Proof: Total Energy

$$\text{For } \mathcal{T} \in \mathbb{T} \text{, we set:} \qquad \mathcal{G}(\mathcal{T}) := \mathcal{J}(U_{\mathcal{T}}) + \sum_{T \in \mathcal{T}} h_T^2 \|f\|_{L^2(T)}^2.$$

Properties

- $\mathcal{G}(\mathcal{T}) \mathcal{J}(u) \simeq |U_{\mathcal{T}} u|_{H^1(\Omega)}^2 + \operatorname{osc}^2(\mathcal{T}).$
- ▶ For \mathcal{T}_* being a refinement of \mathcal{T} , we have

$$\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_*) \simeq \mathcal{E}^2_{\mathcal{T}}(\mathcal{S} \setminus \mathcal{S}_*).$$

▶ The energy $\mathcal{G}: \mathbb{T} \to \mathbb{R}$ satisfies the lower diamond estimate.

$$\mathcal{T}_m^{ ext{opt}} \in \mathbb{T}: \quad \mathcal{G}(\mathcal{T}_m^{ ext{opt}}) = \min \left\{ \mathcal{G}(\mathcal{T}) \colon \mathcal{T} \in \mathbb{T} \text{ mit } \#\mathcal{T} - \#\mathcal{T}_0 \leq m \right\}$$

$$\text{For } \mathcal{T} \in \mathbb{T} \text{, we set:} \qquad \mathcal{G}(\mathcal{T}) := \mathcal{J}(U_{\mathcal{T}}) + \sum_{T \in \mathcal{T}} h_T^2 \|f\|_{L^2(T)}^2.$$

Properties

- $\mathcal{G}(\mathcal{T}) \mathcal{J}(u) \simeq |U_{\mathcal{T}} u|_{H^1(\Omega)}^2 + \operatorname{osc}^2(\mathcal{T}).$
- \blacktriangleright For \mathcal{T}_* being a refinement of \mathcal{T} , we have

$$\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_*) \simeq \mathcal{E}^2_{\mathcal{T}}(\mathcal{S} \setminus \mathcal{S}_*).$$

▶ The energy $\mathcal{G}: \mathbb{T} \to \mathbb{R}$ satisfies the lower diamond estimate.

For $m \in \mathbb{N}$, we define

$$\mathcal{T}_m^{\mathrm{opt}} \in \mathbb{T} : \quad \mathcal{G}(\mathcal{T}_m^{\mathrm{opt}}) = \min \left\{ \mathcal{G}(\mathcal{T}) \colon \mathcal{T} \in \mathbb{T} \text{ mit } \#\mathcal{T} - \#\mathcal{T}_0 \le m \right\}$$

Proof: How to choose \mathcal{C} and \mathcal{U} ?

Population

For a triangulation \mathcal{T} , we define the corresponding *population* as $\mathcal{P} := \mathcal{N}(\mathcal{T})$.

$$gen(child) = gen(parent) + 1.$$

$$\sup_{\mathcal{D}} \sup_{P \in \mathcal{D}} \sup_{k \in \mathbb{N}} \# \big(\operatorname{ancestors}(P) \cap \operatorname{gen}^{-1}(k) \big) =: c_{\mathrm{GD}} < \infty$$

An Instant Optimal AFEM

Proof: How to choose \mathcal{C} and \mathcal{U} ?

Population

For a triangulation \mathcal{T} , we define the corresponding *population* as $\mathcal{P} := \mathcal{N}(\mathcal{T})$.

Populations have a tree structure. Thanks to the initial

$$\operatorname{gen}(\operatorname{child}) = \operatorname{gen}(\operatorname{parent}) + 1$$

$$\sup_{\mathcal{D}} \sup_{P \in \mathcal{D}} \sup_{k \in \mathbb{N}} \# \big(\operatorname{ancestors}(P) \cap \operatorname{gen}^{-1}(k) \big) =: c_{\mathrm{GD}} < \infty$$

An Instant Optimal AFEM

Population

For a triangulation \mathcal{T} , we define the corresponding *population* as $\mathcal{P} := \mathcal{N}(\mathcal{T})$.

Populations have a tree structure. Thanks to the initial

Proof of the Main Result

$$gen(child) = gen(parent) + 1$$

$$\sup_{\mathcal{D}} \sup_{P \in \mathcal{T}} \sup_{k \in \mathbb{N}} \# \left(\operatorname{ancestors}(P) \cap \operatorname{gen}^{-1}(k) \right) =: c_{\mathrm{GD}} < \infty$$

Proof: How to choose \mathcal{C} and \mathcal{U} ?

Population

For a triangulation \mathcal{T} , we define the corresponding *population* as $\mathcal{P} := \mathcal{N}(\mathcal{T})$.

Populations have a tree structure. Thanks to the initial labeling we can assign each person to a generation:

$$gen(child) = gen(parent) + 1.$$

$$\sup_{\mathcal{D}} \sup_{P \in \mathcal{D}} \sup_{k \in \mathbb{N}} \# \left(\operatorname{ancestors}(P) \cap \operatorname{gen}^{-1}(k) \right) =: c_{\mathrm{GD}} < \infty$$

Proof: How to choose \mathcal{C} and \mathcal{U} ?

Population

For a triangulation \mathcal{T} , we define the corresponding *population* as $\mathcal{P} := \mathcal{N}(\mathcal{T})$.

Populations have a tree structure. Thanks to the initial labeling we can assign each person to a generation:

$$gen(child) = gen(parent) + 1.$$

A population is conforming if for all $P \in \mathcal{P}$ all ancestors of P are in \mathcal{P} .

$$\sup_{\mathcal{D}} \sup_{P \in \mathcal{D}} \sup_{k \in \mathbb{N}} \# \big(\operatorname{ancestors}(P) \cap \operatorname{gen}^{-1}(k) \big) =: c_{\mathrm{GD}} < \infty$$

Proof: How to choose C and U?

Population

For a triangulation \mathcal{T} , we define the corresponding *population* as $\mathcal{P}:=\mathcal{N}(\mathcal{T}).$

Populations have a tree structure. Thanks to the initial labeling we can assign each person to a generation:

$$gen(child) = gen(parent) + 1.$$

A population is conforming if for all $P \in \mathcal{P}$ all ancestors of P are in \mathcal{P} .

Limited Genetic Diversity

$$\sup_{\mathcal{P}} \sup_{P \in \mathcal{P}} \sup_{k \in \mathbb{N}} \# \left(\operatorname{ancestors}(P) \cap \operatorname{gen}^{-1}(k) \right) =: c_{\mathrm{GD}} < \infty.$$

$$\mathcal{G}(\mathcal{T}_{k}) - \mathcal{G}(\mathcal{T}_{k+1}) \simeq \bar{\mathcal{E}}_{\max}^{2}(k)
\geq \frac{1}{\#\mathcal{U}} \sum_{\mathcal{T} \in \mathcal{U}} \mathcal{E}_{k}^{2} (\mathcal{S}(\mathcal{T}) \setminus \mathcal{S}_{k})
\geq \frac{1}{\#\mathcal{U}} (\mathcal{G}(\mathcal{T}_{k}) - \mathcal{G}(\mathcal{T}_{\vee}))
\geq \frac{1}{\#\mathcal{U}} (\mathcal{G}(\mathcal{T}^{\wedge}) - \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}}))
\geq \frac{1}{\#\mathcal{U}} \sum_{\mathcal{T} \in \mathcal{C}} (\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}}))
\geq \frac{\#\mathcal{C}}{\#\mathcal{U}} (\mathcal{G}(\mathcal{T}^{\text{opt}}) - \mathcal{G}(\mathcal{T}^{\text{opt}}))$$

Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element.

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\mathrm{opt}}) \ge \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\mathrm{opt}})$.

$$egin{aligned} \mathcal{G}(\mathcal{T}_k) &- \mathcal{G}(\mathcal{T}_{k+1}) \simeq ar{\mathcal{E}}^2_{ ext{max}}(k) \ &\geq rac{1}{\#\mathcal{U}} \sum_{\mathcal{T} \in \mathcal{U}} \mathcal{E}_k^2 ig(\mathcal{S}(\mathcal{T}) \setminus \mathcal{S}_kig) \ &\gtrsim rac{1}{\#\mathcal{U}} ig(\mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{ee})ig) \ &\gtrsim rac{1}{\#\mathcal{U}} ig(\mathcal{G}(\mathcal{T}^{\wedge}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}})ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \sum_{\mathcal{T} \in \mathcal{C}} ig(\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}})ig) \ &\gtrsim rac{\#\mathcal{C}}{\#\mathcal{U}} ig(\mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}})ig) \end{aligned}$$

ロ > (回 > (E > (E >) E の(で

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\text{opt}}) \ge \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}})$.

$$egin{aligned} \mathcal{G}(\mathcal{T}_k) &- \mathcal{G}(\mathcal{T}_{k+1}) \simeq ar{\mathcal{E}}^2_{ ext{max}}(k) \ &\geq rac{1}{\#\mathcal{U}} \sum_{\mathcal{T} \in \mathcal{U}} \mathcal{E}_k^2 ig(\mathcal{S}(\mathcal{T}) \setminus \mathcal{S}_k ig) \ &\gtrsim rac{1}{\#\mathcal{U}} ig(\mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{\lor}) ig) \ &\gtrsim rac{1}{\#\mathcal{U}} ig(\mathcal{G}(\mathcal{T}^{\land}) - \mathcal{G}(\mathcal{T}^{ ext{opt}}_{m+1}) ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \sum_{\mathcal{T} \in \mathcal{C}} ig(\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}^{ ext{opt}}_{m+1}) ig) \ &\gtrsim rac{\#\mathcal{C}}{\#\mathcal{U}} ig(\mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}^{ ext{opt}}_{m+1}) ig) \end{aligned}$$

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\text{opt}}) \ge \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}})$.

$$\begin{split} \mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{k+1}) &\simeq \bar{\mathcal{E}}_{\max}^2(k) \\ &\geq \frac{1}{\#\mathcal{U}} \sum_{\mathcal{T} \in \mathcal{U}} \mathcal{E}_k^2 \big(\mathcal{S}(\mathcal{T}) \setminus \mathcal{S}_k \big) \\ &\gtrsim \frac{1}{\#\mathcal{U}} \left(\mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{\vee}) \right) \\ &\gtrsim \frac{1}{\#\mathcal{U}} \left(\mathcal{G}(\mathcal{T}^{\wedge}) - \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}}) \right) \\ &\gtrsim \frac{1}{\#\mathcal{U}} \sum_{\mathcal{T} \in \mathcal{C}} \left(\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}}) \right) \\ &\gtrsim \frac{\#\mathcal{C}}{\#\mathcal{U}} \left(\mathcal{G}(\mathcal{T}_m^{\text{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}}) \right) \end{split}$$

Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element.

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\mathrm{opt}}) \ge \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\mathrm{opt}})$.

$$egin{aligned} \mathcal{G}(\mathcal{T}_k) &- \mathcal{G}(\mathcal{T}_{k+1}) \simeq ar{\mathcal{E}}^2_{ ext{max}}(k) \ &\geq rac{1}{\#\mathcal{U}} \, \mathcal{E}^2_k ig(igcup_{ au \in \mathcal{U}} \mathcal{S}(\mathcal{T}) \setminus \mathcal{S}_kig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{\lor})ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}^{\land}) - \mathcal{G}(\mathcal{T}^{ ext{opt}}_{m+1})ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, \sum_{\mathcal{T} \in \mathcal{C}} ig(\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}^{ ext{opt}}_{m+1})ig) \ &\gtrsim rac{\#\mathcal{C}}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}^{\text{opt}}_m) - \mathcal{G}(\mathcal{T}^{ ext{opt}}_{m+1})ig) \end{aligned}$$

D 1 4 3 1 4 3 1 2 1 0 0 0

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\text{opt}}) \ge \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}})$.

$$egin{aligned} \mathcal{G}(\mathcal{T}_k) &- \mathcal{G}(\mathcal{T}_{k+1}) \simeq ar{\mathcal{E}}_{ ext{max}}^2(k) \ &\geq rac{1}{\#\mathcal{U}} \, \mathcal{E}_k^2ig(igcup_{ au \in \mathcal{U}} \mathcal{S}(\mathcal{T}) \setminus \mathcal{S}_kig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{\lor})ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}^{\wedge}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}})ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, \sum_{\mathcal{T} \in \mathcal{C}} ig(\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}})ig) \ &\gtrsim rac{\#\mathcal{C}}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}})ig) \end{aligned}$$

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\text{opt}}) \ge \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}})$.

$$egin{aligned} \mathcal{G}(\mathcal{T}_k) &- \mathcal{G}(\mathcal{T}_{k+1}) \simeq ar{\mathcal{E}}_{ ext{max}}^2(k) \ &\geq rac{1}{\#\mathcal{U}} \, \mathcal{E}_k^2 ig(igcup_{\mathcal{T} \in \mathcal{U}} \, \mathcal{S}(\mathcal{T}) \setminus \mathcal{S}_k ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{\lor}) ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}^{\wedge}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}}) ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, \sum_{\mathcal{T} \in \mathcal{C}} ig(\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}}) ig) \ &\gtrsim rac{\#\mathcal{C}}{\mathbb{Z}_{m+1}} \, ig(\mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}}) ig) \end{aligned}$$

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\mathrm{opt}}) \ge \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\mathrm{opt}})$.

$$egin{aligned} \mathcal{G}(\mathcal{T}_k) &- \mathcal{G}(\mathcal{T}_{k+1}) \simeq ar{\mathcal{E}}_{ ext{max}}^2(k) \ &\geq rac{1}{\#\mathcal{U}} \, \mathcal{E}_k^2 ig(igcup_{\mathcal{T} \in \mathcal{U}} \mathcal{S}(\mathcal{T}) \setminus \mathcal{S}_k ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{\lor}) ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, ig(\mathcal{G}(\mathcal{T}^{\land}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}}) ig) \ &\gtrsim rac{1}{\#\mathcal{U}} \, \sum_{\mathcal{T} \in \mathcal{C}} ig(\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}}) ig) \ &\geq rac{\#\mathcal{C}}{\mathbb{C}} \, ig(\mathcal{G}(\mathcal{T}_{opt}) - \mathcal{G}(\mathcal{T}_{opt}^{ ext{opt}}) ig) \end{aligned}$$

Proof of the Main Result

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\mathrm{opt}}) \ge \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_m^{\mathrm{opt}})$.

$$\begin{split} \mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{k+1}) &\simeq \bar{\mathcal{E}}_{\max}^2(k) \\ &\geq \frac{1}{\#\mathcal{U}} \, \mathcal{E}_k^2 \big(\bigcup_{\mathcal{T} \in \mathcal{U}} \mathcal{S}(\mathcal{T}) \setminus \mathcal{S}_k \big) \\ &\gtrsim \frac{1}{\#\mathcal{U}} \, \big(\mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{\vee}) \big) \\ &\gtrsim \frac{1}{\#\mathcal{U}} \, \big(\mathcal{G}(\mathcal{T}^{\wedge}) - \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}}) \big) \\ &\gtrsim \frac{1}{\#\mathcal{U}} \, \sum_{\mathcal{T} \in \mathcal{C}} \big(\mathcal{G}(\mathcal{T}) - \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}}) \big) \\ &\gtrsim \frac{\#\mathcal{C}}{\#\mathcal{U}} \, \big(\mathcal{G}(\mathcal{T}_m^{\text{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}}) \big) \end{split}$$

Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element.

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\text{opt}}) \geq \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}})$.

$$egin{aligned} \mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{k+1}) &\simeq ar{\mathcal{E}}_{ ext{max}}^2(k) \ &\gtrsim rac{\#\mathcal{C}}{\#\mathcal{U}} \left(\mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}})
ight) \ &\geq \mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}}) \end{aligned}$$

Proper choice of ${\cal U}$ and ${\cal C}\colon \ \ \dfrac{\#{\cal C}}{\#{\cal U}} \geq c_{
m GD}.$

Induction yields $C \in \mathbb{N}$, such that

$$\mathcal{G}(\mathcal{T}_{Cm}) - \mathcal{J}(u) \le \mathcal{G}(\mathcal{T}_m^{\text{opt}}) - \mathcal{J}(u)$$

ロ > (回 > (E > (E >) E のQで

Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element.

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\text{opt}}) \ge \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}})$.

$$egin{aligned} \mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{k+1}) &\simeq ar{\mathcal{E}}_{ ext{max}}^2(k) \ &\gtrsim rac{\#\mathcal{C}}{\#\mathcal{U}} \left(\mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}})
ight) \ &\gtrsim \mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}}) \end{aligned}$$

Proper choice of \mathcal{U} and \mathcal{C} : $\frac{\#\mathcal{C}}{\#\mathcal{U}} \geq c_{\mathrm{GD}}$.

Induction yields $C \in \mathbb{N}$, such that

$$\mathcal{G}(\mathcal{T}_{Cm}) - \mathcal{J}(u) \le \mathcal{G}(\mathcal{T}_m^{\text{opt}}) - \mathcal{J}(u)$$

(D) (A) (E) (E) E 900

Induction:

For fixed $k \in \mathbb{N}$ let $m \in \mathbb{N}$, such that $\mathcal{G}(\mathcal{T}_m^{\text{opt}}) \geq \mathcal{G}(\mathcal{T}_k) > \mathcal{G}(\mathcal{T}_{m+1}^{\text{opt}})$.

$$egin{aligned} \mathcal{G}(\mathcal{T}_k) - \mathcal{G}(\mathcal{T}_{k+1}) &\simeq ar{\mathcal{E}}_{ ext{max}}^2(k) \ &\gtrsim rac{\#\mathcal{C}}{\#\mathcal{U}} \left(\mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}})
ight) \ &\gtrsim \mathcal{G}(\mathcal{T}_m^{ ext{opt}}) - \mathcal{G}(\mathcal{T}_{m+1}^{ ext{opt}}) \end{aligned}$$

Proper choice of \mathcal{U} and \mathcal{C} : $\frac{\#\mathcal{C}}{\#\mathcal{U}} \geq c_{\mathrm{GD}}$.

Induction yields $C \in \mathbb{N}$, such that

$$\mathcal{G}(\mathcal{T}_{Cm}) - \mathcal{J}(u) \le \mathcal{G}(\mathcal{T}_m^{\text{opt}}) - \mathcal{J}(u)$$

for all $m \in \mathbb{N}_0$.

Last Slide

Thank you for your attention!