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Poisson Problem:

Let  C R? be a polygonal domain. For f € L*(Q) find u € Hg(Q), such that
—Au=f in H'(Q) and u=0on dQ.

J(u) := /Q % |Vu|* — fudz = min {J(v): v € Hy(Q)}

Finite Elements and Ritz Approximation

Continuous piece wise affine finite elements

V(T) :=={V € Hy(Q) | Vir € P1(T), T € T}
over conforming triangulation 7~ of © with nodes A/ and edges S.

Ur € V(T) : /VU7—~Vde:/dem for all V € V(T).
Q Q
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Error Estimation

Edge Based Residual Indicators

For S € S define  £2(S) ::/hsl[[VUT]]|2 ds+ > /h%f2d:c
s or>s’ 7T

Error Bounds

lu = Urlle S €7(S) == D €7(S) S llu — UrlI§, + 0sc*(T)
Ses

Discrete Error Bounds
Let 7. > T be a refinement of 7. Then

IUr — Urll?, S EFS\S) SUT - Urllg+ / h7f? da
TeT\7.* T
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Refinement Framework

Admissible Triangulations

» Initial conforming Refinement 7y of Q2 with refinement edges labeled as
in [Binev, Dahmen, DeVore '04] or [Stevenson, 08].

» T := {7 : conforming refinement of 7o using NVB}
» Refinement Routine: Let 7 € T with edges S then, for S € S, let

T < T. = REFINE(T, S) € T,

be the smallest refinement of 7 s.t. S & S..

Complexity of REFINE [BDD ’04], [Stevenson, 08]

Let 7o = To < T1 < T3 < ... C T such that for some M C Sk we have

Ter1 = REFINE(Ti, Mi) = #Ti —#To S D #Ma

n<k



u]
‘ ]
1
n
it

Modified Framework

For S € §=S8(T),T €T, define

refined(T, S) := S \ REFINE(T, S)
Accumulated Error Indicators

EF(S) == E7(refined(T, S)) = |Ur —Unlg+ >

h3 2 dz ~ E3-(S)
TeT\T. " T
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AFEM and Main Result



The Adaptive Finite Element Method (AFEM)
Choose p € (0,1] and set k = 0.

SOLVE: compute Uy € V(Ti);
ESTIMATE: compute £2,, (k) := max {S,f(refined('ﬁ, S)):S €Sk}
MARK: My, =0, Ci == S(Ti), My, := 0);
while Cx, # () do
select S € Ci;

if £2(refined(Tr, S) \ M) > p €2y (k);
then My, := M, U{S};
My, := My U refined (7T, S);
end if;
Cr := Ci \ refined(T, S);
end while;
REFINE: compute Ti+1 = REFINE(7, M) and increment k.

[m] = = =
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The Main Result: Instant Optimality

Theorem [Diening, K., Stevenson 2013]
There exist constants C' = C(75), C' = C(To, 1), such that for k,m € N with

we have

C (llu = Urllly + 0sc*(1) 2 [|lu = Ur[I5, + ose*(Ta)
for all T € T with #7 — #7o < m.
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Proof of the Main Result



Proof: Lower Diamond Estimate

Energy

Ti

7"/\

i

74

coarse

fine

Minimal Diamond
Aset (T, Tu; T, ..., T™) is called

minimal diamond, if
» 7" is the finest coarsening and
» 7Ty is the coarsest refinement

of TH,...,7T™.



Proof: Lower Diamond Estimate

. T 3 .. .
& 5 Minimal Diamond
Q
5 ° Aset (T, Tu; T, ..., T™) is called
T T minimal diamond, if
» 7" is the finest coarsening and
T, é > Ty is the coarsest refinement
of TH,...,7T™.

Lower Diamond Estimate
Let (T",Tv;T",...,7™) be a minimal diamond, such that the sets

Q(T? \ Tv) := interior J{T € T7 \ Tv} are pairwise disjoint. Then
1
J(UA) = T(O) = 5 |Ux = Uvli g

1 S
5 Z U‘ - Uvﬁ_p(gj) = ZJ(UJ) - J(U\/)'
j=1 Jj=1



Proof: Total Energy

For T € T, we set:

TeT

G(T):=JWUr)+ Z Rl 22 -
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Proof: Total Energy

For T € T, we set:

G(T):=JWUr)+ Z Rl 22 -

TeT
Properties

> G(T) = T (w) = [Ur — ulp gy + 0sc®(T).

» For 7. being a refinement of 7', we have

G(T) — G(Tx) ~ EF(S\ S.).
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For T € T, we set

G(T):=JUr) +
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TeT

Z hT||f||L2(T)
> G(T) = J(u) = |Ur

3 (g + 0s¢*(T)
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> The energy G : T — R satisfies the lower diamond estimate



Proof: Total Energy

For T €T, weset:  G(T):=JUr)+ Z Rl 22 -

TeT

Properties

> G(T) = T (w) = [Ur — ulp gy + 0sc®(T).

» For 7. being a refinement of 7', we have
G(T) — G(T2) ~ EF(S\ S.).

» The energy G : T — R satisfies the lower diamond estimate.

For m € N, we define

TPt e T: G(TPY) =min {G(T): T € T mit #7 — #7To <m}



Proof: How to choose C and U/7?

Population

For a triangulation 7, we define the corresponding population as P := N (T).
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Proof: How to choose C and U4(?

Population

For a triangulation 7, we define the corresponding population as P := N (T).

T
Populations have a tree structure. Thanks to the initial
labeling we can assign each person to a generation:

gen(child) = gen(parent) + 1.

A population is conforming if for all P € P all ancestors
of P are in P.
Limited Genetic Diversity

sup sup sup # (ancestors(P) N gen_l(k)) =: cgp < 0.
P PEP keN
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Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element
Induction:

For fixed k € N let m € N, such that G(T,5*) > G(Tx) > G(T2
o7y
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Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element
Induction:

For fixed k € N let m € N, such that G(T,5*") > G(Ti) > G(To54).
o7y

g(ﬂc) - g(ﬁ-&-l) =~ gx%lax(k)
> L &
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Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element
Induction:

For fixed k € N let m € N, such that G(T7"") > G(Tx) > G(T20Y).
o7y

g(T) - g(ﬁ-&-l) =~ _x%lax(k)
#— &( TLeJuS T)\ Sk)
> #i (G(T%) - 6(T))




Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element.
Induction:
For fixed k € N let m € N, such that G(T,5*") > G(Ti) > G(To54).
o7y
g(T) - g(ﬁ-&-l) =~ _x%lax(k)

TGL{
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Proof: Main Idea of Optimality
Assume for simplicity: In each iteration, AFEM marks only one largest element.
Induction:

For fixed k € N let m € N, such that G(T,2*") > G(Tx) > G(To54).

17 a(T) - g(mn-‘{iax(k)

—5k US \Sk

Teu

vV

77 (6(Tk) = 6(TV))
7 (G(T") = G(TEY)

Z G(T2))
u

vV
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Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element.

Induction:

For fixed k € N let m € N, such that G(7,2"

o7y

) > G(Tk) > G(TRY).

g(ﬁ-&-l) — _xiax(k)
—5k U S \Sk

Teu

vV

- G4(T))

7 9T
7 (G(T") = G(TEY)

vV

G(T5))
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Assume for simplicity: In each iteration, AFEM marks only one largest element
Induction:
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Proof: Main Idea of Optimality

Assume for simplicity: In each iteration, AFEM marks only one largest element.
Induction:

For fixed k € N let m € N, such that G(T,2*") > G(Tx) > G(To54).

X G(T) = G(Trt) = Epax(h)
ey (G(TRP") = G(TRRY))
2 G(TP") — G(TiY)

Proper choice of U and C: #—C > cap.

H#U
Induction yields C' € N, such that

G(Tom) — T(u) < GTRPY) — T (u)

for all m € Np.
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Thank you for your attention!
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