Recent Progress on the Search of 3D Euler Singularities

Thomas Y. Hou

Applied and Computational Mathematics
California Institute of Technology

Joint work with Guo Luo

International Conference on Applied Mathematics, Crete, 2013
Research is funded by National Science Foundation
1 Introduction
 - The Basic Problem and Previous Work
 - Our Discoveries: Existence of a Finite-Time Singularity

2 Numerical Results
 - Outline of the Method
 - Overview and First Sign of Singularity
 - Resolution Study
 - Confirming the Singularity I: Maximum Vorticity
 - Confirming the Singularity II: Vorticity Moments
 - Confirming the Singularity III: Vorticity Directions
 - Confirming the Singularity IV: Local Self-Similarity
Introduction

The Basic Problem and Previous Work

Our Discoveries: Existence of a Finite-Time Singularity

Numerical Results

Outline of the Method

Overview and First Sign of Singularity

Resolution Study

Confirming the Singularity I: Maximum Vorticity

Confirming the Singularity II: Vorticity Moments

Confirming the Singularity III: Vorticity Directions

Confirming the Singularity IV: Local Self-Similarity
The Basic Problem

- Problem to be studied: the 3D Euler equations for ideal incompressible flows:

\[u_t + u \cdot \nabla u = -\nabla p, \quad \nabla \cdot u = 0, \]

where
- \(u = (u_1, u_2, u_3)^T \): the 3D velocity vector
- \(p \): the scalar pressure

- The grand open problem: existence or nonexistence of global regular solutions from smooth initial data
- Closely related to one of the seven Clay Millennium Problems
Significance of the Problem

Why important?

- mathematically: problem remained open for more than 250 years
- physically: singularity in inviscid flows may (i) signify the onset of turbulence in viscous flows, and (ii) be a mechanism for energy transfer to small scales
- numerically: resolution of nearly singular flows presents a great challenge to computational fluid dynamics
Previous Work

On the theoretical side:
- Kato (1972): local well-posedness
- Constantin-Fefferman-Majda (1996): geometric constraints for blowup
- Deng-Hou-Yu (2005): Lagrangian localized geometric constraints

Other related work:
- Constantin-Majda-Tabak (1994): 2D quasi-geostrophic (QG) equations as a model for 3D Euler
- Cordoba (1998): no blowup of 2D QG near a hyperbolic saddle
Previous Work (Cont’d)

On the numerical search for singularity:

- Grauer and Sideris (1991): first numerical study of axisymmetric flows with swirl; blowup reported away from the axis
- Pumir and Siggia (1992): axisymmetric flows with swirl; blowup reported away from the axis
- Kerr (1993): antiparallel vortex tubes; blowup reported
- E and Shu (1994): 2D Boussinesq; no blowup observed
- Boratav and Pelz (1994): viscous simulations using Kida’s high-symmetry initial condition; blowup reported
- Grauer et al. (1998): perturbed vortex tube; blowup reported
- Hou and Li (2006): repetition of Kerr’s (1993) computation with higher resolution; no blowup observed
- Orlandi and Carnevale (2007): Lamb dipoles; blowup reported

Evidence for blowup is inconclusive and problem remains open
Main Difficulties

- On the theoretical side:
 - for global regularity: lack of appropriate controlling norms
 - for finite-time singularity: lack of effective lower-bound estimates
- On the numerical search for singularity:
 - generation of intense small scales from general initial data
 - lack of sufficient numerical resolution
 - lack of well-established procedure for confirmation of singularity
Outline

1 Introduction
 - The Basic Problem and Previous Work
 - Our Discoveries: Existence of a Finite-Time Singularity

2 Numerical Results
 - Outline of the Method
 - Overview and First Sign of Singularity
 - Resolution Study
 - Confirming the Singularity I: Maximum Vorticity
 - Confirming the Singularity II: Vorticity Moments
 - Confirming the Singularity III: Vorticity Directions
 - Confirming the Singularity IV: Local Self-Similarity
Our Discoveries

After a series of careful numerical studies, we discover a class of initial data that lead to potentially singular solutions of the 3D Euler equations.

Main features of our study:
- focuses on solutions with axis-symmetry both for reduced computational complexity and for a better chance of singularity
- devises highly effective algorithms for adequate resolution
- employs rigorous criteria for confirmation of singularity
Outline

1. Introduction
 - The Basic Problem and Previous Work
 - Our Discoveries: Existence of a Finite-Time Singularity

2. Numerical Results
 - Outline of the Method
 - Overview and First Sign of Singularity
 - Resolution Study
 - Confirming the Singularity I: Maximum Vorticity
 - Confirming the Singularity II: Vorticity Moments
 - Confirming the Singularity III: Vorticity Directions
 - Confirming the Singularity IV: Local Self-Similarity
The Equations

Equations being solved: the 3D axisymmetric Euler (Hou-Li-2008)

\[u_{1,t} + u_r u_{1,r} + u_z u_{1,z} = 2 u_1 \psi_{1,z}, \]
\[\omega_{1,t} + u_r \omega_{1,r} + u_z \omega_{1,z} = (u_1^2)_z, \]
\[-\left[\partial_r^2 + \frac{3}{r} \partial_r + \partial_z^2 \right] \psi_1 = \omega_1,\]

where

- \(u_1 = u^\theta / r, \ \omega_1 = \omega^\theta / r, \ \psi_1 = \psi^\theta / r \): the transformed angular velocity/vorticity/stream function
- \(u^r = -r \psi_{1,z}, \ \ u^z = 2 \psi_1 + r \psi_{1,r} \): the radial/axial velocity components
Computational Setup

- Equations numerically solved in the cylinder

\[D = \left\{ (r, z) : 0 \leq r \leq 1, \ 0 \leq z \leq L \right\}, \]

with
- carefully chosen initial data
- periodic boundary conditions in \(z \)
- no-flow boundary condition at the wall \(r = 1 \)
Numerical Method

- Discretization in space: a hybrid 6th-order Galerkin and 6th-order finite difference method, on an adaptive (moving) mesh that is dynamically adjusted to the evolving solution.
- Discretization in time: an explicit 4th-order Runge-Kutta method, with an adaptively chosen time step.
Outline

1 Introduction
 - The Basic Problem and Previous Work
 - Our Discoveries: Existence of a Finite-Time Singularity

2 Numerical Results
 - Outline of the Method
 - Overview and First Sign of Singularity
 - Resolution Study
 - Confirming the Singularity I: Maximum Vorticity
 - Confirming the Singularity II: Vorticity Moments
 - Confirming the Singularity III: Vorticity Directions
 - Confirming the Singularity IV: Local Self-Similarity
Overview of the Results

- Solution computed using 5 mesh resolutions, with mesh size ranging from 1024×1024 to 2048×2048
- Solution advanced indefinitely in time until either
 - the time step drops below 10^{-12}, or
 - the minimum mesh spacing in r drops below $\epsilon_r = 10^{-15}$, or
 - the minimum mesh spacing in z drops below $\epsilon_z = 10^{-15}L$, whichever happens first
Stop Time

Table: Stop time t_e and cause of termination for each computation, where δ_r, δ_z denotes the minimum mesh spacing in r and z, respectively.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>t_e</th>
<th>Cause of termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 × 1024</td>
<td>0.00350556672</td>
<td>$\delta_r < \epsilon_r$ and $\delta_z < \epsilon_z$</td>
</tr>
<tr>
<td>1280 × 1280</td>
<td>0.00350555820</td>
<td>$\delta_z < \epsilon_z$</td>
</tr>
<tr>
<td>1536 × 1536</td>
<td>0.00350555229</td>
<td>$\delta_z < \epsilon_z$</td>
</tr>
<tr>
<td>1792 × 1792</td>
<td>0.00350555231</td>
<td>$\delta_r < \epsilon_r$ and $\delta_z < \epsilon_z$</td>
</tr>
<tr>
<td>2048 × 2048</td>
<td>0.00350554720</td>
<td>$\delta_r < \epsilon_r$ and $\delta_z < \epsilon_z$</td>
</tr>
</tbody>
</table>
Time Step

Table: Time step δ at selected time t.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$t = 0^\dagger$</th>
<th>$t = 0.0034$</th>
<th>$t = 0.003505$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024×1024</td>
<td>1×10^{-6}</td>
<td>4.9502×10^{-8}</td>
<td>2.4240×10^{-10}</td>
</tr>
<tr>
<td>1280×1280</td>
<td>1×10^{-6}</td>
<td>3.9636×10^{-8}</td>
<td>2.5772×10^{-10}</td>
</tr>
<tr>
<td>1536×1536</td>
<td>1×10^{-6}</td>
<td>3.2907×10^{-8}</td>
<td>2.2223×10^{-10}</td>
</tr>
<tr>
<td>1792×1792</td>
<td>1×10^{-6}</td>
<td>2.8451×10^{-8}</td>
<td>1.9122×10^{-10}</td>
</tr>
<tr>
<td>2048×2048</td>
<td>1×10^{-6}</td>
<td>2.4046×10^{-8}</td>
<td>2.0272×10^{-10}</td>
</tr>
</tbody>
</table>

†: The maximum time step allowed in our computations is 10^{-6}.
Maximum Vorticity

Table: Maximum vorticity $\|\omega\|_\infty = \|\nabla \times u\|_\infty$ at selected time t.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$t = 0$</th>
<th>$t = 0.0034$</th>
<th>$t = 0.003505$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024×1024</td>
<td>3.7699×10^3</td>
<td>4.3127×10^6</td>
<td>1.2416×10^{12}</td>
</tr>
<tr>
<td>1280×1280</td>
<td>3.7699×10^3</td>
<td>4.3127×10^6</td>
<td>1.2407×10^{12}</td>
</tr>
<tr>
<td>1536×1536</td>
<td>3.7699×10^3</td>
<td>4.3127×10^6</td>
<td>1.2403×10^{12}</td>
</tr>
<tr>
<td>1792×1792</td>
<td>3.7699×10^3</td>
<td>4.3127×10^6</td>
<td>1.2401×10^{12}</td>
</tr>
<tr>
<td>2048×2048</td>
<td>3.7699×10^3</td>
<td>4.3127×10^6</td>
<td>1.2401×10^{12}</td>
</tr>
</tbody>
</table>
Figure: The double logarithm of the maximum vorticity, $\log(\log \|\omega\|_\infty)$, computed on the 1024×1024 and the 2048×2048 mesh.
Observations

- Early signs of a looming singularity:
 - sharp decrease in time step and minimum mesh size in r and z.
 - super-double-exponential growth of the maximum vorticity
- Singularity appears to be anisotropic in (x, y, z), a thin tube-like singularity, but is isotropic as a function in the (r, z)-plane.
Effectiveness of the Adaptive Mesh

To assess the effectiveness of the adaptive mesh, define
- p_∞, q_∞: the mesh scaling ratios in z and r
- M_∞, N_∞: the effective mesh resolutions in z and r

near the location of the maximum vorticity
Mesh Scaling Ratios

Table: Mesh scaling ratios p_∞, q_∞ near the maximum vorticity at selected time t.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$t = 0.0034$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024×1024</td>
<td>6.7587×10^2 7.6302 $\times 10^2$</td>
</tr>
<tr>
<td>1280×1280</td>
<td>6.7632×10^2 7.6316 $\times 10^2$</td>
</tr>
<tr>
<td>1536×1536</td>
<td>6.7562×10^2 7.6389 $\times 10^2$</td>
</tr>
<tr>
<td>1792×1792</td>
<td>6.7621×10^2 7.6391 $\times 10^2$</td>
</tr>
<tr>
<td>2048×2048</td>
<td>6.7596×10^2 7.6356 $\times 10^2$</td>
</tr>
</tbody>
</table>
Mesh Scaling Ratios (Cont’d)

Table: Mesh scaling ratios p_∞, q_∞ near the maximum vorticity at selected time t.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$t = 0.003505$</th>
<th>p_∞</th>
<th>q_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 × 1024</td>
<td>1.9456 × 10^9</td>
<td>1.6316 × 10^9</td>
<td></td>
</tr>
<tr>
<td>1280 × 1280</td>
<td>1.9530 × 10^9</td>
<td>1.6285 × 10^9</td>
<td></td>
</tr>
<tr>
<td>1536 × 1536</td>
<td>1.9444 × 10^9</td>
<td>1.6328 × 10^9</td>
<td></td>
</tr>
<tr>
<td>1792 × 1792</td>
<td>1.9504 × 10^9</td>
<td>1.6344 × 10^9</td>
<td></td>
</tr>
<tr>
<td>2048 × 2048</td>
<td>1.9503 × 10^9</td>
<td>1.6330 × 10^9</td>
<td></td>
</tr>
</tbody>
</table>
Effective Mesh Resolutions

Table: Effective mesh resolutions M_∞, N_∞ near the maximum vorticity at selected time t.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$t = 0.0034$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_∞</td>
</tr>
<tr>
<td>1024 × 1024</td>
<td>6.9210×10^5</td>
</tr>
<tr>
<td>1280 × 1280</td>
<td>8.6569×10^5</td>
</tr>
<tr>
<td>1536 × 1536</td>
<td>1.0378×10^6</td>
</tr>
<tr>
<td>1792 × 1792</td>
<td>1.2118×10^6</td>
</tr>
<tr>
<td>2048 × 2048</td>
<td>1.3844×10^6</td>
</tr>
</tbody>
</table>
Effective Mesh Resolutions (Cont’d)

Table: Effective mesh resolutions M_∞, N_∞ near the maximum vorticity at selected time t.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$t = 0.003505$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_∞</td>
</tr>
<tr>
<td>1024×1024</td>
<td>1.9923×10^{12}</td>
</tr>
<tr>
<td>1280×1280</td>
<td>2.4999×10^{12}</td>
</tr>
<tr>
<td>1536×1536</td>
<td>2.9866×10^{12}</td>
</tr>
<tr>
<td>1792×1792</td>
<td>3.4951×10^{12}</td>
</tr>
<tr>
<td>2048×2048</td>
<td>3.9942×10^{12}</td>
</tr>
</tbody>
</table>
Resolution Power of the Mesh

Figure: ω_1 as a function of r along $z = 2.22 \times 10^{-12}$ (the line passing through $\|\omega_1\|_\infty$) at $t = 0.003505$, computed on the 1024×1024 mesh.
Resolution Power of the Mesh (Cont’d)

$\omega_1(r, 2.22 \times 10^{-12})$ on 10242 mesh, $t = 0.003505$

Figure: A zoom-in view of $\omega_1(r, 2.22 \times 10^{-12})$.
Resolution Power of the Mesh (Cont’d)

Figure: ω_1 as a function of z along $r = 1$ (the line passing through $\|\omega_1\|_\infty$) at $t = 0.003505$, computed on the 1024×1024 mesh.
Resolution Power of the Mesh (Cont’d)

Figure: A zoom-in view of $\omega_1(1, z)$.
Outline

1 Introduction
 - The Basic Problem and Previous Work
 - Our Discoveries: Existence of a Finite-Time Singularity

2 Numerical Results
 - Outline of the Method
 - Overview and First Sign of Singularity
 - Resolution Study
 - Confirming the Singularity I: Maximum Vorticity
 - Confirming the Singularity II: Vorticity Moments
 - Confirming the Singularity III: Vorticity Directions
 - Confirming the Singularity IV: Local Self-Similarity
Resolution Study: Why and How

- Resolution study: critical for quality control
- "Traditional" error indicators used in Euler computations:
 - energy conservation
 - enstrophy and enstrophy production rate
 - energy spectra (for periodic problems)
 - conservation of circulation (recently proposed)
- None of them is adequate for singularity detection!
 - they are global error measures, but
 - singularity is typically a local property
The “Correct” Error Indicator

- Our opinion: the only error indicator suitable for singularity detection is the pointwise (sup-norm) error of vorticity.
- Computation of the sup-norm relative error of a numerical solution v_N, defined on an $N \times N$ mesh:
 1. compute a “reference solution” \hat{v} on a finer mesh
 2. interpolate \hat{v} to the (coarse) mesh on which v_N is defined
 3. compute the maximum difference between the two solutions
 4. divide the result by the maximum of $|\hat{v}|$ to yield the error e_N
- Define the numerical order of convergence:

$$\beta_N = \log_k \left(\frac{e_N/k}{e_N} \right), \quad k > 1$$
Resolution Study for Our Computations

- We check the accuracy of our solutions in five steps:
 - code validation on test problems
 - resolution study on primitive variables (angular velocity/vorticity/stream function)
 - resolution study on vorticity vector
 - resolution study on global quantities (energy, enstrophy, enstrophy production, circulation, maximum vorticity)
 - resolution study in time

- Conclusion: solutions well resolved up to and including \(t = 0.003505 \) (recall \(t_e \approx 0.00350555 \))
Resolution Study on Vorticity Vector

![Graph showing sup-norm relative error of the vorticity vector ω.](image)

Figure: Sup-norm relative error of the vorticity vector ω. The last time instant shown in the figure is $t = 0.003504$.

- **Resolution Study**
 - Considerations on the vorticity vector ω.

Numerical Results

- Analysis of the sup-norm relative error ϵ.

- Data points for different resolutions:
 - 1024×1024
 - 1280×1280
 - 1536×1536
 - 1792×1792

- Graph illustrating the error over time t in 10^{-3} units.
Resolution Study on Vorticity Vector (Cont’d)

Figure: Numerical order in sup-norm of the vorticity vector ω. The last time instant shown in the figure is $t = 0.003504$.
Resolution Study on Primitive Variables

Table: Sup-norm relative error and numerical order of convergence of the transformed primitive variables u_1 at selected time t.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$t = 0.003505$</th>
<th>Error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 × 1024</td>
<td></td>
<td>9.4615 × 10^{-6}</td>
<td>–</td>
</tr>
<tr>
<td>1280 × 1280</td>
<td></td>
<td>3.6556 × 10^{-6}</td>
<td>4.2618</td>
</tr>
<tr>
<td>1536 × 1536</td>
<td></td>
<td>1.5939 × 10^{-6}</td>
<td>4.5526</td>
</tr>
<tr>
<td>1792 × 1792</td>
<td></td>
<td>7.5561 × 10^{-7}</td>
<td>4.8423</td>
</tr>
<tr>
<td>Sup-norm</td>
<td>1.0000 × 10^2</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Resolution Study on Primitive Variables (Cont’d)

Table: Sup-norm relative error and numerical order of convergence of the transformed primitive variables ω_1 at selected time t.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$t = 0.003505$</th>
<th>Error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024×1024</td>
<td>6.4354×10^{-4}</td>
<td>$-$</td>
<td></td>
</tr>
<tr>
<td>1280×1280</td>
<td>2.4201×10^{-4}</td>
<td>4.3829</td>
<td></td>
</tr>
<tr>
<td>1536×1536</td>
<td>1.1800×10^{-4}</td>
<td>3.9396</td>
<td></td>
</tr>
<tr>
<td>1792×1792</td>
<td>6.4388×10^{-5}</td>
<td>3.9297</td>
<td></td>
</tr>
<tr>
<td>Sup-norm</td>
<td>1.0877×10^6</td>
<td>$-$</td>
<td></td>
</tr>
</tbody>
</table>
Resolution Study on Primitive Variables (Cont’d)

Table: Sup-norm relative error and numerical order of convergence of the transformed primitive variables ψ_1 at selected time t.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$t = 0.003505$</th>
<th>Error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024×1024</td>
<td>2.8180×10^{-10}</td>
<td>$-$</td>
<td></td>
</tr>
<tr>
<td>1280×1280</td>
<td>4.7546×10^{-11}</td>
<td>7.9746</td>
<td></td>
</tr>
<tr>
<td>1536×1536</td>
<td>1.0873×10^{-11}</td>
<td>8.0925</td>
<td></td>
</tr>
<tr>
<td>1792×1792</td>
<td>2.9518×10^{-12}</td>
<td>8.4583</td>
<td></td>
</tr>
<tr>
<td>Sup-norm</td>
<td>2.1610×10^{-1}</td>
<td>$-$</td>
<td></td>
</tr>
</tbody>
</table>
Conservation of Circulation

- Conservation of circulation: physically important but difficult to check (requires choice and tracking of material curves)
- In axisymmetric flows, however, circulations along the contours
 \[C = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = r^2, \ z \ \text{a constant} \right\} \]
 have a particularly simple form: \(\Gamma(r, z) = 2\pi r^2 u_1 \)
- An alternative to conservation of circulation: monitoring the extrema \(\Gamma_1 = \min_{r,z} \Gamma \) and \(\Gamma_2 = \max_{r,z} \Gamma \), which must be conserved over time
Resolution Study on Conserved Quantities

Table: Kinetic energy E, minimum circulation Γ_1, maximum circulation Γ_2 and their maximum (relative) change over $[0, 0.003505]$.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$|\delta E|_{\infty, t}$</th>
<th>$|\delta \Gamma_1|_{\infty, t}$</th>
<th>$|\delta \Gamma_2|_{\infty, t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024×1024</td>
<td>1.53×10^{-11}</td>
<td>4.35×10^{-17}</td>
<td>1.25×10^{-14}</td>
</tr>
<tr>
<td>1280×1280</td>
<td>4.17×10^{-12}</td>
<td>3.30×10^{-17}</td>
<td>7.78×10^{-15}</td>
</tr>
<tr>
<td>1536×1536</td>
<td>2.08×10^{-12}</td>
<td>3.13×10^{-17}</td>
<td>9.95×10^{-15}</td>
</tr>
<tr>
<td>1792×1792</td>
<td>6.47×10^{-13}</td>
<td>2.77×10^{-17}</td>
<td>2.14×10^{-14}</td>
</tr>
<tr>
<td>2048×2048</td>
<td>6.66×10^{-13}</td>
<td>2.53×10^{-17}</td>
<td>3.49×10^{-14}</td>
</tr>
<tr>
<td>Init. value</td>
<td>55.93</td>
<td>0.00</td>
<td>628.32</td>
</tr>
</tbody>
</table>
Outline

1 Introduction
- The Basic Problem and Previous Work
- Our Discoveries: Existence of a Finite-Time Singularity

2 Numerical Results
- Outline of the Method
- Overview and First Sign of Singularity
- Resolution Study
- Confirming the Singularity I: Maximum Vorticity
- Confirming the Singularity II: Vorticity Moments
- Confirming the Singularity III: Vorticity Directions
- Confirming the Singularity IV: Local Self-Similarity
The Beale-Kato-Majda (BKM) Criterion

- The main tool for studying blowup/non-blowup: the Beale-Kato-Majda (BKM) criterion (Beale et al. 1984)

Theorem

Let u be a solution of the 3D Euler equations, and suppose there is a time t_s such that the solution cannot be continued in the class

$$u \in C([0, t]; H^m) \cap C^1([0, t]; H^{m-1}), \quad m \geq 3$$

to $t = t_s$. Assume that t_s is the first such time. Then

$$\int_0^{t_s} \| \omega(\cdot, t) \|_\infty \, dt = \infty, \quad \omega = \nabla \times u.$$
Applying the BKM Criterion

The “standard” approach to singularity detection:

1. assume the existence of an inverse power-law

\[\|\omega(\cdot, t)\|_\infty \sim c(t_s - t)^{-\gamma}, \quad c, \gamma > 0 \]

2. estimate \(t_s \) and \(\gamma \) using a line fitting:

\[\left[\frac{d}{dt} \log \|\omega(\cdot, t)\|_\infty \right]^{-1} \sim \frac{1}{\gamma} (t_s - t) \]

3. estimate \(c \) using another line fitting:

\[\log \|\omega(\cdot, t)\|_\infty \sim -\gamma \log (\hat{t}_s - t) + \log c, \]

where \(\hat{t}_s \) is the singularity time estimated in step 2.
Applying the BKM Criterion

The “standard” approach to singularity detection:
1. assume the existence of an inverse power-law

\[\| \omega(\cdot, t) \|_\infty \sim c(t_s - t)^{-\gamma}, \quad c, \gamma > 0 \]

2. estimate \(t_s \) and \(\gamma \) using a line fitting:

\[
\left[\frac{d}{dt} \log \| \omega(\cdot, t) \|_\infty \right]^{-1} \sim \frac{1}{\gamma} (t_s - t)
\]

3. estimate \(c \) using another line fitting:

\[\log \| \omega(\cdot, t) \|_\infty \sim -\gamma \log (\hat{t}_s - t) + \log c, \]

where \(\hat{t}_s \) is the singularity time estimated in step 2.
Applying the BKM Criterion

- The “standard” approach to singularity detection:
 1. assume the existence of an inverse power-law

\[
\|\omega(\cdot, t)\|_\infty \sim c (t_s - t)^{-\gamma}, \quad c, \gamma > 0
\]

2. estimate \(t_s \) and \(\gamma \) using a line fitting:

\[
\left[\frac{d}{dt} \log \|\omega(\cdot, t)\|_\infty \right]^{-1} \sim \frac{1}{\gamma} (t_s - t)
\]

3. estimate \(c \) using another line fitting:

\[
\log \|\omega(\cdot, t)\|_\infty \sim -\gamma \log (\hat{t}_s - t) + \log c,
\]

where \(\hat{t}_s \) is the singularity time estimated in step 2
The Key to Success

- The key to the line fitting: the choice of the fitting interval
- Must be placed within the asymptotic regime of the power-law, if such a law exists
- Selection has been discretionary in previous studies
- Inadvertent choice of the fitting interval has led to false predictions of finite-time singularity
Our Criteria

- Our criteria for choosing the fitting interval $[\tau_1, \tau_2]$:
 - τ_2 is the last time at which the solution is still “accurate”
 - the line fitting computed on $[\tau_1, \tau_2]$ is “optimal”

- These ideas have been implemented in a subroutine with user tunable parameters.

- Our criteria for a successful line fitting:
 - both τ_2 and the line-fitting predicted singularity time \hat{t}_s converge to the same finite value as the mesh is refined; the convergence should be monotone, i.e. $\tau_2 \uparrow t_s$, $\hat{t}_s \downarrow t_s$
 - τ_1 converges to a finite value that is strictly less than t_s as the mesh is refined
Our Criteria

- Our criteria for choosing the fitting interval $[\tau_1, \tau_2]$:
 - τ_2 is the last time at which the solution is still “accurate”
 - the line fitting computed on $[\tau_1, \tau_2]$ is “optimal”

- These ideas have been implemented in a subroutine with user tunable parameters.

- Our criteria for a successful line fitting:
 - both τ_2 and the line-fitting predicted singularity time \hat{t}_s converge to the same finite value as the mesh is refined; the convergence should be monotone, i.e. $\tau_2 \uparrow t_s$, $\hat{t}_s \downarrow t_s$
 - τ_1 converges to a finite value that is strictly less than t_s as the mesh is refined
Our Criteria

- Our criteria for choosing the fitting interval $[\tau_1, \tau_2]$:
 - τ_2 is the last time at which the solution is still “accurate”
 - the line fitting computed on $[\tau_1, \tau_2]$ is “optimal”

- These ideas have been implemented in a subroutine with user tunable parameters.

- Our criteria for a successful line fitting:
 - both τ_2 and the line-fitting predicted singularity time \hat{t}_s converge to the same finite value as the mesh is refined; the convergence should be monotone, i.e. $\tau_2 \uparrow t_s$, $\hat{t}_s \downarrow t_s$
 - τ_1 converges to a finite value that is strictly less than t_s as the mesh is refined
Numerical Results

Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Indication of a Power-Law

\[y = \left[\frac{d}{dt} \log \| \omega \|_\infty \right]^{-1} \] on 2048\(^2\) mesh

Figure: Inverse logarithmic time derivative of the maximum vorticity, \(\left[\frac{d}{dt} \log \| \omega \|_\infty \right]^{-1} \), computed on the 2048 \(\times \) 2048 mesh.
Applying the Ideas: Computing the Line Fitting

Figure: Inverse logarithmic time derivative \(\left[\frac{d}{dt} \log \| \omega \|_\infty \right]^{-1} \) and its line fitting \(\hat{\gamma}_1^{-1} (\hat{t}_s - t) \), computed on the 2048 \(\times \) 2048 mesh.
Applying the Ideas: Computing the Line Fitting

Figure: A zoom-in view of the line fitting $\hat{\gamma}_1^{-1}(\hat{t}_s - t)$.

Numerical Results
Confirming the Singularity I: Maximum Vorticity

3.5048×10^{-3}

3.505×10^{-3}

3.5052×10^{-3}

3.5054×10^{-3}

3.5056×10^{-3}

$y = \left[\frac{d}{dt} \log \| \omega \|_{\infty} \right]^{-1}$ on 2048^2 mesh

$y(t)$

$\hat{\gamma}^{-1}(\hat{t}_s - t)$
Applying the Ideas: Computing the Line Fitting

Figure: Maximum vorticity $\|\omega\|_{\infty}$ and its inverse power-law fitting $\hat{c} (\hat{t}_s - t)^{-\hat{\gamma}_2}$, computed on the 2048 \times 2048 mesh.
Applying the Ideas: Computing the Line Fitting

Figure: A zoom-in view of the inverse power-law fitting $\hat{c}(\hat{t}_s - t)^{-\hat{\gamma}_2}$.
Applying the Ideas: the “Best” Fitting Interval

Table: The “best” fitting interval $[\tau_1, \tau_2]$ and the estimated singularity time $\hat{t_s}$.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>τ_1</th>
<th>τ_2</th>
<th>$\hat{t_s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024×1024</td>
<td>0.003306</td>
<td>0.003410</td>
<td>0.0035070</td>
</tr>
<tr>
<td>1280×1280</td>
<td>0.003407</td>
<td>0.003453</td>
<td>0.0035063</td>
</tr>
<tr>
<td>1536×1536</td>
<td>0.003486</td>
<td>0.003505</td>
<td>0.0035056</td>
</tr>
<tr>
<td>1792×1792</td>
<td>0.003479</td>
<td>0.003505</td>
<td>0.0035056</td>
</tr>
<tr>
<td>2048×2048</td>
<td>0.003474</td>
<td>0.003505</td>
<td>0.0035056</td>
</tr>
</tbody>
</table>
Numerical Results

Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Results of the Line Fitting

Table: The best line fittings for $\|\omega\|_\infty$ computed on $[\tau_1, \tau_2]$.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$\hat{\gamma}_1$</th>
<th>$\hat{\gamma}_2$</th>
<th>\hat{c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024×1024</td>
<td>2.5041</td>
<td>2.5062</td>
<td>4.8293×10^{-4}</td>
</tr>
<tr>
<td>1280×1280</td>
<td>2.4866</td>
<td>2.4894</td>
<td>5.5362×10^{-4}</td>
</tr>
<tr>
<td>1536×1536</td>
<td>2.4544</td>
<td>2.4559</td>
<td>7.4912×10^{-4}</td>
</tr>
<tr>
<td>1792×1792</td>
<td>2.4557</td>
<td>2.4566</td>
<td>7.4333×10^{-4}</td>
</tr>
<tr>
<td>2048×2048</td>
<td>2.4568</td>
<td>2.4579</td>
<td>7.3273×10^{-4}</td>
</tr>
</tbody>
</table>

\dagger: $\hat{\gamma}_1$ is computed from $\left[\frac{d}{dt} \log(\|\omega\|_\infty) \right]^{-1} \sim \gamma^{-1}(t_s - t)$.

\ddagger: $\hat{\gamma}_2$ is computed from $\log(\|\omega\|_\infty) \sim -\gamma \log(t_s - t) + \log \hat{c}$.

Conclusion: solution develops a singularity at $t_s \approx 0.0035056$ (recall $t_e \approx 0.00350555$)
Comparison with Other Numerical Studies

Table: Comparison of our results with other numerical studies. K: Kerr (1993); BP: Boratav and Pelz (1994); GMG: Grauer et al. (1998); OC: Orlandi and Carnevale (2007); τ_2: the last time at which the solution is deemed “well resolved”.

<table>
<thead>
<tr>
<th>Studies</th>
<th>τ_2</th>
<th>t_s</th>
<th>Effec. res.</th>
<th>Vort. amp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>17</td>
<td>18.7</td>
<td>$\leq 512^3$</td>
<td>23</td>
</tr>
<tr>
<td>BP</td>
<td>1.6†</td>
<td>2.06</td>
<td>1024^3</td>
<td>180</td>
</tr>
<tr>
<td>GMG</td>
<td>1.32</td>
<td>1.355</td>
<td>2048^3</td>
<td>21</td>
</tr>
<tr>
<td>OC</td>
<td>2.72</td>
<td>2.75</td>
<td>1024^3</td>
<td>55</td>
</tr>
<tr>
<td>Ours</td>
<td>0.003505</td>
<td>0.0035056</td>
<td>$(3 \times 10^{12})^2$</td>
<td>3×10^8</td>
</tr>
</tbody>
</table>

†: According to Hou and Li (2008).
Outline

1 Introduction
 - The Basic Problem and Previous Work
 - Our Discoveries: Existence of a Finite-Time Singularity

2 Numerical Results
 - Outline of the Method
 - Overview and First Sign of Singularity
 - Resolution Study
 - Confirming the Singularity I: Maximum Vorticity
 - Confirming the Singularity II: Vorticity Moments
 - Confirming the Singularity III: Vorticity Directions
 - Confirming the Singularity IV: Local Self-Similarity
Vorticity Moments

- Another quantity of interest: vorticity moment integrals

\[
\Omega_{2m} = \left[\int_D |\omega|^{2m} \, dx \right]^{1/2m}, \quad m = 1, 2, \ldots
\]

- By Hölder’s inequality,

\[
\Omega_{2m} \leq \Omega_{2n} |D|^{(n-m)/(2mn)}, \quad 1 \leq m < n
\]

- In particular, the blowup of any \(\Omega_{2m} \) implies the blowup of \(\|\omega\|_\infty = \Omega_\infty \).
Higher Vorticity Moments

All vorticity moments of order \(\geq 2 \) seem to blow up.

- We first check if \(\Omega_{2m} \ (m > 1) \) blows up like an inverse power-law,

\[
\Omega_{2m}(t) \sim c(t_s - t)^{-\gamma}, \quad c, \gamma > 0?
\]

- We found that it has nearly linear inverse logarithmic time derivatives, thus
- obey an inverse power-law, and
- are amenable to a line fitting
Results of the Line Fitting

Table: The line fitting of the $2m$-th vorticity moment Ω_{2m}, computed on the interval $[\tau_1, \tau_2]$.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$\hat{t}_{2m,s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$m = 2$</td>
</tr>
<tr>
<td>1024×1024</td>
<td>0.0035231</td>
</tr>
<tr>
<td>1280×1280</td>
<td>0.0035115</td>
</tr>
<tr>
<td>1536×1536</td>
<td>0.0035056</td>
</tr>
<tr>
<td>1792×1792</td>
<td>0.0035057</td>
</tr>
<tr>
<td>2048×2048</td>
<td>0.0035057</td>
</tr>
</tbody>
</table>

Recall $t_s \approx 0.0035056$
Results of the Line Fitting (Cont’d)

Table: The line fitting of the 2^m-th vorticity moment Ω_{2^m}, computed on the interval $[\tau_1, \tau_2]$.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$\hat{\gamma}_{2^m}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$m = 2$</td>
</tr>
<tr>
<td>1024 × 1024</td>
<td>1.2542</td>
</tr>
<tr>
<td>1280 × 1280</td>
<td>1.1306</td>
</tr>
<tr>
<td>1536 × 1536</td>
<td>1.0019</td>
</tr>
<tr>
<td>1792 × 1792</td>
<td>1.0039</td>
</tr>
<tr>
<td>2048 × 2048</td>
<td>1.0062</td>
</tr>
</tbody>
</table>

Conclusion: higher vorticity moments blow up at t_s
Outline

1 Introduction
 - The Basic Problem and Previous Work
 - Our Discoveries: Existence of a Finite-Time Singularity

2 Numerical Results
 - Outline of the Method
 - Overview and First Sign of Singularity
 - Resolution Study
 - Confirming the Singularity I: Maximum Vorticity
 - Confirming the Singularity II: Vorticity Moments
 - **Confirming the Singularity III: Vorticity Directions**
 - Confirming the Singularity IV: Local Self-Similarity
Key quantity in the BKM criterion: the sup-norm of the vorticity magnitude

The vorticity direction $\xi = \omega/|\omega|$ could also play a role!

Recall the vorticity equation

$$|\omega|_t + u \cdot \nabla |\omega| = \alpha |\omega|,$$

where $\alpha = \xi \cdot \nabla u \cdot \xi$ is the vorticity amplification factor
Vorticity Amplification Factor

- Direct computation shows

\[\alpha = \frac{3}{4\pi} P.V. \int D(\hat{y}, \xi(x + y), \xi(x))|\omega(x + y)| \frac{dy}{|y|^3}, \]

where \(\hat{y} = y / |y| \) and

\[D(e_1, e_2, e_3) = (e_1 \cdot e_3) \det(e_1, e_2, e_3) \]

- Note the formal quadratic nonlinearity \(\alpha |\omega| \sim |\omega|^2 \)
Key observation: “smoothly varying” vorticity direction ξ
- makes $D(\hat{y}, \xi(x + y), \xi(x))$ “small near $y = 0$”, and
- prevents α from growing like some power of $|\omega|$.

The most well-known (non)blowup criteria in this direction:
- Constantin-Fefferman-Majda (CFM), 1996
- Deng-Hou-Yu (DHY), 2005
The CFM Criterion

- Essential ideas of CFM: no blowup if, among other things,
 - \(\xi \) is locally Lipschitz, or
 - \(\sin \phi_x(y) \) is locally Lipschitz in \(y \), where \(\phi_x(y) \) is the angle between \(\xi(x) \) and \(\xi(x + y) \)

- Note that
 - both conditions ensure the Lipschitz continuity of \(D(\hat{y}, \xi(x + y), \xi(x)) \) at \(y = 0 \), in view of the estimate:

\[
|D(\hat{y}, \xi(x + y), \xi(x))| \leq |\sin \phi_x(y)| \leq |\xi(x + y) - \xi(x)|
\]

- the second condition allows for antiparallel vortex lines but the first one doesn’t
The DHY Criterion

- Essential ideas of DHY: no blowup if, among other things,
 - the divergence of ξ, $\nabla \cdot \xi$, and
 - the curvature $\kappa = |\xi \cdot \nabla \xi|$,
 along a vortex line do not grow “too fast” compared with the “diminishing rate” of the length of the vortex line
- Similar in spirit to CFM but more localized
Checking Against the CFM Criterion

Figure: The local Lipschitz constants of ξ and $D(\hat{y}, \xi(x + y), \xi(x))$ at the location of the maximum vorticity, \tilde{q}_0.
Checking Against the DHY Criterion

Figure: The maximum/minimum of $\nabla \cdot \xi$ and κ in a local neighborhood $D_\infty(t)$ of the maximum vorticity.
Observations

- The rapid growth of the “smoothness indicators” shown in the previous plots
 - implies the breakdown of both CFM and DHY (can be more rigorously checked using line fitting)
 - is a result of the “densely packed” vortex lines near the location of the maximum vorticity
Geometry of the Vorticity Direction

\[\tilde{\xi} = (\xi^r, \xi^z) \] near \(\tilde{q}_0 \) on 1024\(^2\) mesh, \(t = 0.003505 \)

Figure: The 2D vorticity direction \(\tilde{\xi} = (\xi^r, \xi^z)^T \) near the maximum vorticity. The maximum of \(|\xi^\theta| \) in this region is \(2.1874 \times 10^{-6} \) and hence is negligible.
Figure: The z-component $ξ^z$ of the vorticity direction $ξ$ near the maximum vorticity. Note the rapid variation of $ξ^z$ in z.
An Algebraic Point of View

- The previous analysis suggests the growth of α depend on the smoothness of ξ (a geometric point of view).
- From an algebraic point of view,

$$\alpha = \xi \cdot \nabla u \cdot \xi = \xi \cdot S\xi, \quad S = \frac{1}{2}(\nabla u + \nabla u^T),$$

thus the growth of α depends on the eigenstructure of S.
Spectral Dynamics

- Due to symmetry, S has
 - 3 real eigenvalues $\{\lambda_i\}_{i=1}^3$ (assuming $\lambda_1 \geq \lambda_2 \geq \lambda_3$), and
 - a complete set of orthogonal eigenvectors $\{w_i\}_{i=1}^3$
- We discover, at the location of the maximum vorticity, that:
 - the vorticity direction ξ is perfectly aligned with w_2, i.e.

$$\lambda_2 = \alpha = \frac{d}{dt} \log \|\omega\|_\infty \sim c_2 (t_s - t)^{-1}$$

- the largest positive/negative eigenvalues satisfy

$$\lambda_{1,3} \sim \pm \frac{1}{2} \|\omega\|_\infty \sim \pm c(t_s - t)^{-2.457}$$
Outline

1 Introduction
 - The Basic Problem and Previous Work
 - Our Discoveries: Existence of a Finite-Time Singularity

2 Numerical Results
 - Outline of the Method
 - Overview and First Sign of Singularity
 - Resolution Study
 - Confirming the Singularity I: Maximum Vorticity
 - Confirming the Singularity II: Vorticity Moments
 - Confirming the Singularity III: Vorticity Directions
 - Confirming the Singularity IV: Local Self-Similarity
Locally Self-Similar Solutions

Solutions of the 3D Euler equations in \mathbb{R}^3 have special scaling properties:

$$u(x, t) \rightarrow \lambda^\alpha u(\lambda x, \lambda^{\alpha+1} t), \quad \lambda > 0, \ \alpha \in \mathbb{R}$$

Can this give rise to a (locally) self-similar blowup?
Nonexistence Results of Chae

- Essential ideas: no blowup of the form

\[\nabla u(x, t) \sim \frac{1}{t_s - t} \nabla U \left(\frac{x - x_0}{[t_s - t]^\beta} \right), \quad x \in \mathbb{R}^3 \]

if, among other things,

- \(\limsup_{t \to t_s} (t_s - t) \| \nabla u(\cdot, t) \|_\infty < \infty \) and is “not large enough”, or
- \(\Omega := \nabla \times U \) decays “sufficiently fast” at \(\infty \)

- The scaling \(\nabla u = O(t_s - t)^{-1} \) is dictated by **dimensional analysis**.
Self-Similar Solutions with Axis-Symmetry

In axisymmetric flows, self-similar solutions naturally take the form

\[
\begin{align*}
 u_1(\tilde{x}, t) &\sim (t_s - t)^{\gamma_u} U \left(\frac{\tilde{x} - \tilde{x}_0}{\ell(t)} \right), \\
 \omega_1(\tilde{x}, t) &\sim (t_s - t)^{\gamma_\omega} \Omega \left(\frac{\tilde{x} - \tilde{x}_0}{\ell(t)} \right), \\
 \psi_1(\tilde{x}, t) &\sim (t_s - t)^{\gamma_\psi} \Psi \left(\frac{\tilde{x} - \tilde{x}_0}{\ell(t)} \right),
\end{align*}
\]

where \(\tilde{x} = (r, z)^T \) and \(\ell(t) \sim [\delta^{-1}(t_s - t)]^{\gamma_\ell} \) is a length scale.

Not a “conventional” self-similar solution when viewed in \(\mathbb{R}^3 \)! It is a tube-like anisotropic singularity due to the axi-symmetry.
The New Scaling Laws

- Substituting the self-similar ansatz into the axisymmetric Euler equations yields

\[
\begin{align*}
\gamma_u - 1 &= \gamma_u + \gamma_\psi - 2\gamma_\ell, \\
\gamma_\omega - 1 &= \gamma_\omega + \gamma_\psi - 2\gamma_\ell = 2\gamma_u - \gamma_\ell, \\
\gamma_\psi - 2\gamma_\ell &= \gamma_\omega,
\end{align*}
\]

or, after simplification,

\[
\begin{align*}
\gamma_\omega &= -1, \\
\gamma_\psi &= -1 + 2\gamma_\ell, \\
\gamma_u &= -1 + \frac{1}{2}\gamma_\ell.
\end{align*}
\]
This gives rise to a scaling law

\[\| \nabla u(\cdot, t) \|_\infty \sim c(t_s - t)^{\gamma_u - \gamma_\ell}, \]

which

- may be very different from the “standard” law \(O(t_s - t)^{-1} \), and which
- gives new hope for the existence of a self-similar solution
Identifying a Self-Similar Solution

- Recall the three elements of a locally self-similar solution:
 - the center of self-similarity, \(\tilde{x}_0 \)
 - a neighborhood of \(\tilde{x}_0 \) in which self-similarity is observed
 - a self-similar profile

- In our computation: \(\tilde{x}_0 \) must be the location of the maximum vorticity, the point of blowup

- To identify a “self-similar neighborhood”, consider

\[
C_\infty(t) = \left\{ (r, z) \in D : |\omega(r, z, t)| = \frac{1}{2} \|\omega(\cdot, t)\|_\infty \right\}
\]
Existence of Self-Similar Neighborhood

Figure: The level curves of $\frac{1}{2}\|\omega\|_\infty$ in linear-linear scale at various time instants.
Existence of Self-Similar Neighborhood (Cont’d)

Figure: The level curves of $\frac{1}{2} \| \omega \|_\infty$ in log-log scale (against the variables $1 - r$ and z) at various time instants. Note the similar shapes of all curves.
Existence of Self-Similar Neighborhood (Cont’d)

Figure: The rescaled level curves of $\frac{1}{2} \|\omega\|_\infty$ on 2048^2 mesh.
Existence of Self-Similar Neighborhood (Cont’d)

Figure: A zoom-in view of the rescaled level curves of $\frac{1}{2}\|\omega\|_{\infty}$ on 2048^2 mesh.
The Length Scale

- A natural choice of the length scale:

\[
\ell(t) = \max_{\tilde{x} \in D_\infty(t)} |\tilde{x} - \tilde{x}_0|,
\]

where

\[
D_\infty(t) = \left\{ (r, z) : |\omega(r, z, t)| \geq \frac{1}{2} \|\omega(\cdot, t)\|_\infty \right\}
\]

- Similar study suggests the existence of self-similar profiles: shall use \(\omega_1 \) to illustrate
Existence of Self-Similar Profiles along r

Figure: The r-cross section of ω_1 near $z = 0$ at various time instants; plot shown in linear-linear scale.
Existence of Self-Similar Profiles along r (Cont’d)

Figure: The r-cross section of ω_1 near $z = 0$ at various time instants; plot shown in log-log scale (against the variables $1 - r$ and z).
Figure: The rescaled solution $\tilde{\omega}_1$ near $z = 0$.
Existence of Self-Similar Profiles along r (Cont’d)

Figure: A zoom-in view of the rescaled solution $\tilde{\omega}_1$ near $z = 0$.
Existence of Self-Similar Profiles along z

Figure: The z-cross section of ω_1 along $r = 1$ at various time instants; plot shown in linear-linear scale.
Existence of Self-Similar Profiles along z (Cont’d)

Figure: The z-cross section of ω_1 along $r = 1$ at various time instants; plot shown in log-log scale (against the variables $1 - r$ and z).
Existence of Self-Similar Profiles along z (Cont’d)

Figure: The rescaled solution $\tilde{\omega}_1$ along $r = 1$.
Figure: A zoom-in view of the rescaled solution $\tilde{\omega}_1$ along $r = 1$.

rescaled $\tilde{\omega}_1$ along $r = 1$ on 2048^2 mesh

$t = 0.00347$

$t = 0.003505$
Indication of Self-Similarity in 2D

Figure: The contour plot of ω_1 near the maximum vorticity at $t = 0.003$.
Figure: The contour plot of ω_1 near the maximum vorticity at $t = 0.0034$.

Thomas Y. Hou (ACM, Caltech) Finite-Time Singularity of 3D Euler Crete 2013 94 / 101
Figure: The contour plot of ω_1 near the maximum vorticity at $t = 0.0035$.

\[r = 1 - 1.51 \times 10^{-7} \]

\[z = 6.71 \times 10^{-9} \]
Figure: The contour plot of ω_1 near the maximum vorticity at $t = 0.003505$.
Determining the Self-Similar Solution

- Given the existence of a self-similar solution, the scaling laws can be estimated from a line fitting.
- The estimates are then checked against the relations

\[
\gamma_\omega = -1, \quad \gamma_\psi = -1 + 2\gamma_\ell, \quad \gamma_u = -1 + \frac{1}{2}\gamma_\ell,
\]

\[
\|\omega(\cdot, t)\|_\infty \sim c(t_s - t)^{\gamma_u - \gamma_\ell},
\]

for consistency.
The Scaling Exponents

Table: Scaling exponents of ℓ, u_1, ω_1, and ψ_1.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$\hat{\gamma}_\ell$</th>
<th>$\hat{\gamma}_u$</th>
<th>$\hat{\gamma}_\omega$</th>
<th>$\hat{\gamma}_\psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024×1024</td>
<td>2.7359</td>
<td>0.4614</td>
<td>-0.9478</td>
<td>4.7399</td>
</tr>
<tr>
<td>1280×1280</td>
<td>2.9059</td>
<td>0.4629</td>
<td>-0.9952</td>
<td>4.8683</td>
</tr>
<tr>
<td>1536×1536</td>
<td>2.9108</td>
<td>0.4600</td>
<td>-0.9964</td>
<td>4.8280</td>
</tr>
<tr>
<td>1792×1792</td>
<td>2.9116</td>
<td>0.4602</td>
<td>-0.9966</td>
<td>4.8294</td>
</tr>
<tr>
<td>2048×2048</td>
<td>2.9133</td>
<td>0.4604</td>
<td>-0.9972</td>
<td>4.8322</td>
</tr>
</tbody>
</table>

$\gamma_\ell \geq 1$: consistent with the \textit{a posteriori} bound $\|u\|_{\infty} \leq C$
Consistency Check

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>$-1 + \frac{1}{2} \hat{\gamma}_\ell$</th>
<th>$-1 + 2 \hat{\gamma}_\ell$</th>
<th>$\hat{\gamma}u - \hat{\gamma}\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 \times 1024</td>
<td>0.3679</td>
<td>4.4717</td>
<td>-2.2745</td>
</tr>
<tr>
<td>1280 \times 1280</td>
<td>0.4530</td>
<td>4.8118</td>
<td>-2.4430</td>
</tr>
<tr>
<td>1536 \times 1536</td>
<td>0.4554</td>
<td>4.8215</td>
<td>-2.4508</td>
</tr>
<tr>
<td>1792 \times 1792</td>
<td>0.4558</td>
<td>4.8232</td>
<td>-2.4514</td>
</tr>
<tr>
<td>2048 \times 2048</td>
<td>0.4567</td>
<td>4.8266</td>
<td>-2.4529</td>
</tr>
</tbody>
</table>

Ref. value

$\hat{\gamma}_u : 0.4604$ $\hat{\gamma}_\psi : 4.8322$ $\hat{\gamma}_1 : 2.4568$

$\|\omega\|_\infty \sim c(t_s - t)^{-2.45}$: consistent with Chae’s nonexistence results
Main contributions of our study: discovery of potentially singular solutions of the 3D Euler equations

Similar singularity formation also observed in 2D Boussinesq equations for stratified flows

Outlook
- Understanding the physical mechanism for blow-up.
- More mathematical analysis (partial results obtained on a simplified model problem).
Acknowledgement

We gratefully acknowledge the computing resources provided by:

- the **SHC cluster** at Caltech Center for Advanced Computing Research (CACR), where all computations reported in this work were carried out
- the **Brutus cluster** at ETH Zürich (ETHZ), where part of the preliminary computations in this study were done

We gratefully acknowledge the support from:

- the staff members at SHC, especially **Sharon Brunett**
- **Prof. Petros Koumoutsakos** at ETHZ, who kindly allowed us to use his computing resources