A Kac Model for Fermions

Federica Pezzotti - Sapienza, Università di Roma
work in collaboration with
M. Pulvirenti - Sapienza, Università di Roma
M. Colangeli - Politecnico di Torino

ACMAC - Heraklion, June 17, 2013
The homogeneous fermionic Boltzmann equation

\[\frac{\partial f}{\partial t} (v \rightarrow t) = \int S^2 dv_1 B(|v - v_1| \rightarrow !) [f_0 f_1 (1 \leftrightarrow f_1) (1 \leftrightarrow f_0) | \{z \}] \]

\[f(v \rightarrow 0) = f_{\text{in}} (v) \]

\[v_2 = R_3, t_2 = (0 \rightarrow 1) \rightarrow (\sim 3) \]

"INFINITE" system of weakly interacting fermions [Uehling - Uhlenbeck 1933]

If \(f_{\text{in}} (v) \): velocity distribution at time \(t = 0 \)

\[\int S^2 dv f_{\text{in}} (v) = 1 \]

\[\mathbf{I} \mathbf{v}_0 = \mathbf{v}_! \cdot \left[(\mathbf{v}_! \cdot !) \rightarrow \mathbf{v}_1 \right] \]

\[\mathbf{I} \mathbf{v}_0 = \mathbf{v}_1 + ! \cdot \left[(\mathbf{v}_! \cdot !) \rightarrow \mathbf{v}_1 \right] \]

\[\mathbf{I} f_0 := f(v \rightarrow t) \rightarrow f_0 \]

\[\mathbf{I} f_1 := f(v_0 \rightarrow t) \rightarrow f_1 \]

\[\mathbf{I} B(|v - v_1| \rightarrow !) \] cross-section associated with the transition \(v \rightarrow v_1 \)

\[\mathbf{I} \mathbf{v}_2 + \mathbf{v}_2 = (\mathbf{v}_! \mathbf{v}_! \rightarrow \mathbf{v}_0) \]

energy conservation

\[|v - v_1| = |v_0 - v_0| \] relative velocity preserved

\[\mathbf{I} \mathbf{v}_1 + \mathbf{v}_1 = \mathbf{v}_0 + \mathbf{v}_0 \] momentum conservation
The homogeneous fermionic Boltzmann equation

\[
\begin{aligned}
\frac{\partial}{\partial t} f(v, t) &= \int_{S^2} d\omega \int_{\mathbb{R}^3} d\nu_1 B(|v - \nu_1|, \omega) [f' f_1' (1 - \alpha f)(1 - \alpha f_1) - f f_1 (1 - \alpha f')(1 - \alpha f_1')] \\
f(v, 0) &= f_{in}(v)
\end{aligned}
\]

\(v \in \mathbb{R}^3, t \in (0, +\infty), S^2 = \{\omega \in \mathbb{R}^3 : |\omega| = 1\}, \quad \alpha \in (0, 1), \quad (\alpha \sim \hbar^3)\)

"INFINITE" system of weakly interacting fermions \cite{Uehling - Uhlenbeck 1933}

- \(f_{in}(v)\): velocity distribution at time \(t = 0 \Rightarrow f_{in} \in L^1_+ (\mathbb{R}^3), \int d\nu f_{in}(\nu) = 1\)
- \(v' = v - \omega \cdot [(v - \nu_1) \cdot \omega], \quad v'_1 = \nu_1 + \omega \cdot [(v - \nu_1) \cdot \omega]\),
- \(f' := f(v', t), \quad f'_1 := f(v'_1, t), \quad f := f(v, t), \quad f_1 := f(\nu_1, t)\)
- \(B(|v - \nu_1|, \omega)\) cross-section associated with the transition \(v, \nu_1 \rightarrow v', \nu'_1\) \([\rightarrow B ' 'GOOD' ']\)
- \(v^2 + v_1^2 = (v')^2 + (v'_1)^2\) energy conservation
- \(|v - \nu_1| = |v' - \nu'_1|\) relative velocity preserved
- \(v + \nu_1 = v' + \nu'_1\) momentum conservation
The Kac Model
The Kac Model

\[
\begin{align*}
\left\{ \begin{array}{l}
\partial_t W^N(V_N, t) = \frac{1}{N} \sum_{1 \leq i < j \leq N} \int d\omega B(|v_i - v_j|, \omega) \left[W^N(V_{i:j}^N, t) - W^N(V_N, t) \right] \\
W^N(V_N, 0) = f_{in}^N(V_N)
\end{array} \right.
\end{align*}
\]

\[V_N = (v_1, \ldots, v_N) \in \mathbb{R}^{3N}, \quad V_{i:j}^N := (v_1, \ldots, v_i', \ldots, v_j', \ldots, v_N) \in \mathbb{R}^{3N}, \quad t \in (0, +\infty)\]

- stochastic \(N\) particle dynamics, \(W^N(V_N, t)\): velocity distribution \([M. \ Kac \ 1956]\)

- \(W^N(t) \in L^1_+(\mathbb{R}^3)\) for all \(t \geq 0\), \(\int dV_N \ W^N(V_N, t) = 1\)

- momentum and energy conservation hold
The Kac Model

\[
\begin{aligned}
\partial_t W^N(V_N, t) &= \frac{1}{N} \sum_{1 \leq i < j \leq N} \int d\omega B(|v_i - v_j|, \omega) \left[W^N(V^i:j_N, t) - W^N(V_N, t) \right] \\
W^N(V_N, 0) &= f_{in}^\otimes N(V_N)
\end{aligned}
\]

\(V_N = (v_1, \ldots, v_N) \in \mathbb{R}^{3N}, V^i:j_N := (v_1, \ldots, v'_i, \ldots, v'_j, \ldots, v_N) \in \mathbb{R}^{3N}, t \in (0, +\infty)\)

- stochastic N particle dynamics, \(W^N(V_N, t)\): velocity distribution \([\text{M. Kac 1956}]\)

- \(W^N(t) \in L_+^1(\mathbb{R}^3)\) for all \(t \geq 0\), \(\int dV_N W^N(V_N, t) = 1\)

- momentum and energy conservation hold

- \(f^N_k(V_k, t) := \int dv_{k+1} \ldots dv_N W^N(V_N, t), k = 1, \ldots, N\) marginal distributions

\[
\Downarrow
\]

\(B(|\nu|, \omega)\) bounded wrt \(\nu\): \(f^N_k(t) \to (f(t))^{\otimes k}\) as \(N \to \infty\) \((L^1 - \text{PoC})\)

where \(f(t)\) solves the homogeneous Boltzmann eqn with initial datum \(f_{in}(\nu)\).
Kac Model for Fermions

GOAL:
analogous model (and result) for the homogeneous fermionic Boltzmann equation

IDEA:
define a stochastic N-particle dynamics that "simulates" the Pauli exclusion principle

Fix $\epsilon > 0$ and consider a partition of the one-particle phase-space \mathbb{R}^3 made of cells of side ϵ^3

Define:

$\implies (v \rightarrow v_m) = 1 \implies$ if $v \rightarrow v_m$ are in different cells

$\implies (v \rightarrow v_m) = 0 \implies$ otherwise

and

$(V_N) = \sum_{1 \leq \tau < m \leq N} (v \rightarrow v_m) \cdot \text{An}$

N-particle configuration V_N is said to be admissible $(V_N) = 1$.

We work on $A_N := \{ V_N \in \mathbb{R}^{3N} : (V_N) = 1 \}$.
GOAL: analogous model (and result) for the homogeneous fermionic Boltzmann equation
GOAL: analogous model (and result) for the homogeneous **fermionic** Boltzmann equation

IDEA: define a stochastic N-particle dynamics that "simulates" the Pauli exclusion principle
Kac Model for Fermions

GOAL: analogous model (and result) for the homogeneous fermionic Boltzmann equation

IDEA: define a stochastic N-particle dynamics that "simulates" the Pauli exclusion principle

\[
\begin{align*}
\text{Fix } \delta > 0 \text{ and consider a partition of the one-particle phase-space } \mathbb{R}^3 \text{ made of cells } \Delta \\
of \text{side } \delta \text{ (volume } \delta^3)
\end{align*}
\]
Kac Model for Fermions

GOAL: analogous model (and result) for the homogeneous fermionic Boltzmann equation

IDEA: define a stochastic N-particle dynamics that "simulates" the Pauli exclusion principle

\[\downarrow \]

Fix $\delta > 0$ and consider a partition of the one-particle phase-space \mathbb{R}^3 made of cells Δ of side δ (volume δ^3)

Define:

\[\chi_\delta(v_\ell, v_m) = \begin{cases} 1, & \text{if } v_\ell \text{ and } v_m \text{ are in different cells} \\ 0, & \text{otherwise} \end{cases} \]

and

\[\chi_\delta(V_N) = \prod_{1 \leq \ell < m \leq N} \chi_\delta(v_\ell, v_m) \]

• An N-particle configuration V_N is said to be **admissible** iff $\chi_\delta(V_N) = 1$.

• We work on $\mathcal{A}_\delta^N := \{ V_N \in \mathbb{R}^{3N} \text{ s.t. } \chi_\delta(V_N) = 1 \}$
Kac Model for Fermions

\[\mathcal{W}(V_N \hookrightarrow t) = \sum_{\{X_i, j = 1, i < j \}} \{Z, B_{ij}(V_i, j \hookrightarrow t) \} \]

the transition \(V_N \hookrightarrow V_i, j \) is allowed if and only if both the departure and arrival configuration are admissible.
Kac Model for Fermions

\[\begin{align*}
\partial_t W^N(V_N, t) &= \frac{1}{N} \sum_{i,j=1 \atop i<j}^N \int d\omega \ B_{ij}^\omega \left[\bar{\chi}_\delta(V_N) W^N(V_{N}^{i:j}, t) - \bar{\chi}_\delta(V_{N}^{i:j}) W^N(V_N, t) \right] \\
W^N(V_N, 0) &= W_0^N(V_N) \text{ s.t. } \text{supp } W_0^N \subseteq \mathcal{A}_\delta^N \quad (\text{ME})
\end{align*} \]

where \(B_{i,j}^\omega := B(|v_i - v_j|, \omega) \)

\[\Rightarrow \quad W^N(t) \in L^1_+(\mathbb{R}^3) \text{ for all } t \geq 0, \quad \int dV_N \ W^N(V_N, t) = 1 \]

\[\Rightarrow \quad \text{the transition } V_N \to V_N^{i:j} \text{ is allowed if and only if both the departure and arrival configuration are admissible} \]

\[\Downarrow \]

\[\text{supp } W^N(t) \subseteq \mathcal{A}_\delta^N, \quad \forall \ t > 0 \]
Propagation of Chaos

$t = 0$: \(N\) "almost" uncorrelated particles (hyp. of molecular chaos)

$m > 0$: many-body dynamics ruled by correlations arise

Definition of \(\{f_{Nk}(t)\}_{Nk=1}^{\infty}\) (marginal distributions)

For any \(k\):

\[
\lim_{N \to \infty} f_{Nk}(t), \quad \text{suitable hyp. on } B, W_{N=0}
\]

Limiting distributions \(\{f_{1k}(t)\}_{k=1}^{\infty}\)

For \(k = 1\):

Solve the homogeneous U-U Equation

For \(k \geq 2\):

\(f_{1k}(t) = (f_{11}(t))^{\otimes k}\) (propagation of chaos)
Propagation of Chaos

\[t = 0: \ \text{N "almost" uncorrelated particles (hyp. of molecular chaos)} \]
Propagation of Chaos

\[t = 0: \ N \ "almost" \ uncorrelated \ particles \ (hyp. \ of \ molecular \ chaos) \]

\[\downarrow \]

\[t > 0: \ \text{many-body dynamics ruled by (ME) \rightarrow correlations arise} \]
Propagation of Chaos

\(t = 0 \): N "almost" uncorrelated particles (hyp. of molecular chaos)

\(\downarrow \)

\(t > 0 \): many-body dynamics ruled by (ME) \(\rightarrow \) correlations arise

\(\downarrow \)

definition of \(\{ f^N_k(t) \}_{k=1}^N \) (marginal distributions)
Propagations of Chaos

$t = 0$: N "almost" uncorrelated particles (hyp. of molecular chaos)

\[\downarrow \]

$t > 0$: many-body dynamics ruled by (ME) \rightarrow correlations arise

\[\downarrow \]

definition of $\{ f^N_k(t) \}_{k=1}^N$ (marginal distributions)

\[\downarrow \]

for any k: $\lim_{N \rightarrow +\infty, \delta \rightarrow 0} f^N_k(t)$ \rightarrow suitable hyp. on B and W_0^N
Propagation of Chaos

\[t = 0: \text{N "almost" uncorrelated particles (hyp. of molecular chaos)} \]

\[\downarrow \]

\[t > 0: \text{many-body dynamics ruled by (ME) \rightarrow correlations arise} \]

\[\downarrow \]

definition of \(\{f^N_k(t)\}_{k=1}^N \) \((\text{marginal distributions}) \)

\[\downarrow \]

for any \(k: \lim_{N \to +\infty, \delta \to 0} f^N_k(t) \)

\[\leftarrow \text{suitable hyp. on } B \text{ and } W_0^N \]

\[\downarrow \]

limiting distributions \(\{f^\infty_k(t)\}_{k=1}^{+\infty} \)
Propagation of Chaos

\[t = 0: \text{N "almost" uncorrelated particles (hyp. of molecular chaos)} \]

\[\downarrow \]

\[t > 0: \text{many-body dynamics ruled by (ME) } \rightarrow \text{correlations arise} \]

\[\downarrow \]

definition of \(\{f^N_k(t)\}_{k=1}^N \) (marginal distributions)

\[\downarrow \]

for any \(k \):

\[
\lim_{N \to +\infty, \delta \to 0} f^N_k(t) \quad \rightarrow \text{suitable hyp. on } B \text{ and } W_0^N
\]

\[\downarrow \]

limiting distributions \(\{f^\infty_k(t)\}_{k=1}^{+\infty} \)

\[\downarrow \]

for \(k = 1 \): \(f^\infty_1(t) \) solves the homogeneous U-U Equation
Propagation of Chaos

\[t = 0: \ N \ "almost" \ uncorrelated \ particles \ (\textit{hyp. \ of \ molecular \ chaos}) \]

\[\downarrow \]

\[t > 0: \ \text{many-body \ dynamics \ ruled \ by} \ (\textit{ME}) \rightarrow \text{correlations \ arise} \]

\[\downarrow \]

\text{definition \ of} \ \{f_{N}^{N}(t)\}^{N}_{k=1} \ (\textit{marginal \ distributions})

\[\downarrow \]

\[\text{for \ any} \ k: \ \lim_{N \to +\infty, \delta \to 0} f_{k}^{N}(t) \leftrightarrow \text{suitable \ hyp. \ on} \ B \ \text{and} \ W_{0}^{N} \]

\[\downarrow \]

\text{limiting \ distributions} \ \{f_{k}^{\infty}(t)\}^{+\infty}_{k=1}

\[\downarrow \]

\[\text{for} \ k = 1: \ f_{1}^{\infty}(t) \text{\ solves \ the} \ \textit{homogeneous} \ \textit{U-U Equation} \]

\[\downarrow \]

\[\text{for} \ k \geq 2: \ f_{k}^{\infty}(t) = (f_{1}^{\infty}(t))^{\otimes k} \ (\textit{propagation \ of \ chaos}) \]
Choice of the scaling

To recover the fermionic equation we need to keep track of the "exclusion mechanism" even for large N, this is the "origin" of the "fermionic" part of the collision kernel (\ldots)

The "exclusion mechanism" is implemented by the admissibility requirement and that can be seen as a constraint on the volume occupied by the N particles constituting the system, ($V_N = 1$)

The regime we HAVE TO consider is $N \to 0$ with $N^3 > 0$

Remark 1: if $N^3 \neq 0$ we go back to the classical homogeneous Boltzmann eqn

NOTE: support $W_N \in \mathbb{A}_N$

We will assume asymptotic factorization at $t = 0$: $f_N(k)(0) \approx f_k(\infty)$.
Choice of the scaling

- To recover the fermionic equation we need to keep track of the "exclusion mechanism" even for large N
Choice of the scaling

- To recover the fermionic equation we need to keep track of the "exclusion mechanism" even for large $N \mapsto$ this is the "origin" of the "fermionic" part of the collision kernel (... $\rightarrow \alpha f_{1}...$)
Choice of the scaling

• To recover the fermionic equation we need to keep track of the "exclusion mechanism" even for large N \rightarrow this is the "origin" of the "fermionic" part of the collision kernel ($\ldots - \alpha ff_1\ldots$)

• The "exclusion mechanism" is implemented by the admissibility requirement and that can be seen as a constraint on the volume occupied by the N particles constituting the system \rightarrow $\bar{\chi}_\delta(V_N) = 1$ \Rightarrow occupied volume $\sim N\delta^3$
Choice of the scaling

• To recover the fermionic equation we need to keep track of the "exclusion mechanism" even for large N \mapsto this is the "origin" of the "fermionic" part of the collision kernel ($\ldots - \alpha f_1 \ldots$)

• The "exclusion mechanism" is implemented by the admissibility requirement and that can be seen as a constraint on the volume occupied by the N particles constituting the system $\mapsto \chi_\delta(V_N) = 1 \Rightarrow$ occupied volume $\sim N\delta^3$

\[\Downarrow \]

The regime we HAVE TO consider is $N \to \infty$, $\delta \to 0$ with $N\delta^3 = \alpha > 0$
Choice of the scaling

- To recover the fermionic equation we need to keep track of the "exclusion mechanism" even for large $N \mapsto$ this is the "origin" of the "fermionic" part of the collision kernel (... $- \alpha f_{1}...$)

- The "exclusion mechanism" is implemented by the admissibility requirement and that can be seen as a constraint on the volume occupied by the N particles constituting the system $\mapsto \chi_{\delta}(V_{N}) = 1 \Rightarrow$ occupied volume $\sim N\delta^{3}$

\[
\downarrow
\]
The regime we HAVE TO consider is $N \to \infty, \delta \to 0$ with $N\delta^{3} = \alpha > 0$

Remark 1: if $N\delta^{3} \to 0$ we go back to the classical homogeneous Boltzmann eqn
Choice of the scaling

- To recover the fermionic equation we need to keep track of the "exclusion mechanism" even for large $N \rightarrow \text{this is the "origin" of the "fermionic" part of the collision kernel (...} - \alpha f f_1...$

- The "exclusion mechanism" is implemented by the admissibility requirement and that can be seen as a constraint on the volume occupied by the N particles constituting the system $\leftarrow \bar{\chi}_\delta(V_N) = 1 \Rightarrow$ occupied volume $\sim N\delta^3$

The regime we HAVE TO consider is $\text{N} \rightarrow \infty, \delta \rightarrow 0 \text{ with } N\delta^3 = \alpha > 0$

Remark 1: if $N\delta^3 \rightarrow 0$ we go back to the classical homogeneous Boltzmann eqn

NOTE: $\text{supp } W_0^N \subseteq A_\delta^N \Rightarrow \nexists f_{\text{in}} \text{ s.t. } W_0^N = f_{\text{in}}^\otimes N$

\leftarrow We will assume asymptotic factorization at $t = 0$: $f_k^N(0) \rightarrow f_{\text{in}}^\otimes k$
Assumptions on the Initial Data and the cross-section B

1. There exists a one particle probability distribution f in (v) such that:

 $f_{in} \in C^0(\mathbb{R}^3)$ and $f_{in}(v) \rightarrow e^{v_2}$ for some $\epsilon > 0$

 $\sup_{V_k} f_{N_k}(V_k \mapsto 0) \rightarrow 0$ for all k and for any compact set $K \subseteq A_k$, where $A_k = \{ v_k \in \mathbb{R}^3 : v_k \neq v_m \mapsto \text{for any } v_k \mapsto v_m \mapsto \cdots \mapsto k \mapsto \cdots \}$(1)

2. For all k and for any compact set A, where $A_k := \{ v_k \in \mathbb{R}^3 : v_k \neq v_m \mapsto \text{for any } v_k \mapsto v_m \mapsto \cdots \mapsto k \mapsto \cdots \}$(2)

3. For all $k = 1 \mapsto 2 \mapsto \cdots$, there exists a constant $z_1 > 0$, not depending on N, such that:

 $f_{N_k}(V_k \mapsto 0) \leq (z_1)^k e^{v_2}$

Note: (1)-(2) \Rightarrow uniform convergence outside the diagonals.
Assumptions on the Initial Data and the cross-section \mathcal{B}

1. $\text{supp } W_0^N \subseteq A_0^N$,

2. there exists a one particle probability distribution $f_{in}(v)$ such that:

 \begin{align*}
 &\cdot f_{in} \in C^0(\mathbb{R}^3) \quad \text{and} \quad f_{in}(v) \leq \frac{e^{-\beta v^2}}{\alpha}, \quad \text{for some } \beta > 0 \\
 &\cdot \sup_{\mathcal{V}_k \in K} \left| f_k^N (V_k, 0) - f_{in}^{\otimes k} (V_k) \right| \to 0, \quad \text{as } N \to \infty, \ \delta \to 0, \ \text{and } N\delta^3 = \alpha,
 \end{align*}

 for all k and for any compact set $K \subset A^k$, where

 \begin{equation}
 A^k := \{ V_k \in \mathbb{R}^{3k} : \ v_{\ell} \neq v_m, \quad \text{for any } \ell \neq m, \ \ell, m = 1, 2, \ldots, k \} \tag{2}
 \end{equation}

3. for all $k = 1, 2, \ldots$, there exist a constant $z_1 > 0$, not depending on N, such that:

 \begin{equation}
 f_k^N (V_k, 0) \leq (z_1)^k e^{-\beta V_k^2} \tag{3}
 \end{equation}

Note: (1)-(2) \iff uniform convergence outside the diagonals.

i) $\sup_{\omega \in S^2} \sup_{v \in \mathbb{R}^3} B(v; \omega) < C_1 < +\infty$, for some $C_1 > 0$, not depending on N

ii) there exists $M > 0$, not depending on N, s.t. $B(v; \omega) = 0$, if $|v| > M$, $\forall \ \omega \in S^2$

iii) $B(v; \omega)$ is continuous with respect to v
Theorem 1 (Colangeli, P., Pulvirenti '13)

Let the initial data and the kernel $B_{i,j}$ satisfy assumptions 1.2.3. and $i > j$ respectively. Then, there exists $t_0 > 0$ such that, for a.e. V, $k \in A_k$,

$$\lim_{N \to +\infty} N^{3} = f_N(t) = f(t)$$

$$\delta t < t_0$$

where $f(t)$ is the unique L_1-solution of the $U-U$ equation with initial datum f.

STRATEGY (Lanford '75), Duhamel (series) expansions and direct control on them for $t < t_0$ (L_1 estimates), term by term convergence (pointwise in A_k).

WHY short time?

NO (uniform) a priori estimates on $|f_N(t)|_1$

HINT to go beyond t_0?

MAXIMUM PRINCIPLE for the $U-U$ eqn.
Main Result 1. - Short time

Theorem 1 [Colangeli, P., Pulvirenti '13]

Let the initial data and the kernel $B_{i,j}^\omega$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, there exists $t_0 > 0$ such that, for a.e. $V_k \in A^k$

$$\lim_{N \to +\infty, \delta \to 0, N \delta^3 = \alpha} f_k^N(t) = (f(t))^\times_k, \quad \forall \ t < t_0$$

where $f(t)$ is the unique L^∞-solution of the $U-U$ equation with initial datum f_{in}.
Main Result 1. - Short time

Theorem 1 [Colangeli, P., Pulvirenti '13]

Let the initial data and the kernel $B_{i,j}^ω$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, there exists $t_0 > 0$ such that, for a.e. $V_k \in A^k$

\[
\lim_{N \to +\infty, \delta \to 0} \lim_{N\delta^3 = \alpha} f_k^N(t) = (f(t))^\otimes k, \quad \forall t < t_0
\]

where $f(t)$ is the unique L^∞-solution of the U-U equation with initial datum f_{in}.

STRATEGY (\(\sim\) Lanford '75)

\(\leftarrow\) Duhamel (series) expansions and direct control on them for $t < t_0$ (L^∞ estimates)

\(\leftarrow\) term by term convergence (pointwise in A^k)
Main Result 1. - Short time

Theorem 1 [Colangeli, P., Pulvirenti ’13]

Let the initial data and the kernel $B_{i,j}^{\omega}$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, there exists $t_0 > 0$ such that, for a.e. $V_k \in A^k$

$$\lim_{N \to +\infty, \delta \to 0} f_k^N(t) = (f(t))^{\otimes_k}, \quad \forall t < t_0$$

where $f(t)$ is the unique L^∞-solution of the U-U equation with initial datum f_{in}.

STRATEGY (\rightsquigarrow Lanford ’75)

\rightarrow Duhamel (series) expansions and direct control on them for $t < t_0$ (L$^\infty$ estimates)

\rightarrow term by term convergence (pointwise in A^k)

Q1. **WHY short time?** NO (uniform) a priori estimates on $\|f_k^N(t)\|_\infty$
Theorem 1 [Colangeli, P., Pulvirenti '13]

Let the initial data and the kernel $B_{i,j}^\omega$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, there exists $t_0 > 0$ such that, for a.e. $V_k \in \mathcal{A}^k$

$$\lim_{N \to +\infty, \delta \to 0} f_k^N(t) = (f(t))^{\otimes_k}, \quad \forall t < t_0$$

where $f(t)$ is the unique L^∞-solution of the U-U equation with initial datum f_{in}.

STRATEGY (\Leftrightarrow Lanford '75)

\leftarrow Duhamel (series) expansions and direct control on them for $t < t_0$ (L$^\infty$ estimates)

\leftarrow term by term convergence (pointwise in \mathcal{A}^k)

Q1. **WHY short time?** NO (uniform) a priori estimates on $\|f_k^N(t)\|_\infty$

Q2. **HINT to go beyond** t_0?
Main Result 1. - Short time

Theorem 1 [Colangeli, P., Pulvirenti ’13]

Let the initial data and the kernel $B_{i,j}$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, there exists $t_0 > 0$ such that, for a.e. $V_k \in \mathcal{A}^k$

$$
\lim_{N \to +\infty, \delta \to 0, N\delta^3 = \alpha} f_k^N(t) = (f(t))^{\otimes k}, \quad \forall \ t < t_0
$$

where $f(t)$ is the unique L^∞-solution of the U-U equation with initial datum f_{in}.

STRATEGY (*≈* Lanford ’75)

\leftrightarrow Duhamel (series) expansions and direct control on them for $t < t_0$ (L$^\infty$ estimates)

\leftrightarrow term by term convergence (pointwise in \mathcal{A}^k)

Q1. **WHY short time?** NO (uniform) a priori estimates on $\|f_k^N(t)\|_\infty$

Q2. **HINT to go beyond t_0?** MAXIMUM PRINCIPLE for the U-U eqn.
Main Result 2. - Global in time PoC

Theorem 2. [Colangeli, P., Pulvirenti '13]

Let the initial data and the kernel \(B^{i,j} \) satisfy assumptions 1, 3, and iii), respectively. Then, for any \(t > 0 \),

\[
\lim_{N \to +\infty} N^{-\frac{3}{2}} f_N^k(t) = \mathcal{U} f(t) \quad (\text{iii})
\]

where \(f(t) \) is the unique \(L_1 \)-solution of the \(U-U \) equation with initial datum \(f \) in \(R^3 \).

STRATEGY concerning \(Q1 \):

- define a suitable norm \(\| \cdot \| \) s.t.

\[
\| f_N^k(t) \| \leq \mathcal{C} \quad (\text{iii})
\]

concerning \(Q2 \):

- theorem max principle provides a global \(L_1 \) control on the \(U-U \) hierarchy, term by term convergence holds pointwise, \(L_1 \) makes the three topologies above to "match" well, convergence at \(t > 0 \) is weaker than that we require at \(t = 0 \):

PILING UP
Main Result 2. - Global in time PoC

Theorem 2 [Colangeli, P., Pulvirenti '13]

Let the initial data and the kernel $B_{i,j}^\omega$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, for any $t > 0$

$$\lim_{N \to +\infty, \delta \to 0} \left\| f_N^k(t) - (f(t))^\otimes k \right\|_{L^1(\Lambda_k)} = 0, \quad \forall \text{ compact sets } \Lambda_k \subset \mathbb{R}^{3k}$$

where $f(t)$ is the unique L^∞-solution of the $U-U$ equation with initial datum f_{in}.
Main Result 2. - Global in time PoC

Theorem 2 [Colangeli, P., Pulvirenti ’13]

Let the initial data and the kernel $B_{i,j}$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, for any $t > 0$

$$\lim_{N \to +\infty, \delta \to 0} \left\| f_N^k(t) - (f(t)) \otimes^k \right\|_{L^1(\Lambda_k)} = 0, \quad \forall \text{ compact sets } \Lambda_k \subset \mathbb{R}^{3k}$$

where $f(t)$ is the unique L^∞-solution of the $U-U$ equation with initial datum f_{in}.

STRATEGY
Main Result 2. - Global in time PoC

Theorem 2 [Colangeli, P., Pulvirenti ’13]

Let the initial data and the kernel $B_{i,j}^\omega$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, for any $t > 0$

$$\lim_{N \to +\infty, \delta \to 0} \left\| f_k^N(t) - (f(t))^{\otimes k} \right\|_{L^1(\Lambda_k)} = 0, \quad \forall \text{ compact sets } \Lambda_k \subset \mathbb{R}^{3k}$$

where $f(t)$ is the unique L^∞-solution of the U-U equation with initial datum f_{in}.

STRATEGY

← concerning Q1.: define a suitable norm $\| \cdot \|_\delta$ s.t. $\| f_k^N(t) \|_{\delta,k} \leq (c)^k \forall \ t$
Theorem 2 [Colangeli, P., Pulvirenti ’13]

Let the initial data and the kernel $B_{i,j}$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, for any $t > 0$

$$\lim_{N \to +\infty, \delta \to 0} \left\| f_N^k(t) - (f(t))^\otimes k \right\|_{L^1(\Lambda_k)} = 0, \quad \forall \text{ compact sets } \Lambda_k \subset \mathbb{R}^{3k}$$

where $f(t)$ is the unique L^∞-solution of the U-U equation with initial datum f_{in}.

STRATEGY

\leftarrow concerning Q1.: define a suitable norm $\| \cdot \|_{\delta}$ s.t. $\| f_N^k(t) \|_{\delta,k} \leq (c)^k \forall t$

\leftarrow concerning Q2.: the maximum principle provides a global L^∞-control on the U-U hierarchy
Main Result 2. - Global in time PoC

Theorem 2 [Colangeli, P., Pulvirenti ’13]

Let the initial data and the kernel $B_{i,j}$ satisfy assumptions 1. – 3. and i) – iii), respectively. Then, for any $t > 0$

$$\lim_{N \to +\infty, \delta \to 0} \left\| f_k^N(t) - (f(t))^{\otimes k} \right\|_{L^1(\Lambda_k)} = 0, \quad \forall \text{ compact sets } \Lambda_k \subset \mathbb{R}^{3k}$$

where $f(t)$ is the unique L^∞-solution of the $U-U$ equation with initial datum f_{in}.

STRATEGY

\leftarrow concerning **Q1.**: define a suitable norm $\| \cdot \|_\delta$ s.t. $\left\| f_k^N(t) \right\|_{\delta, k} \leq (c)^k \forall t$

\leftarrow concerning **Q2.**: the maximum principle provides a global L^∞-control on the $U-U$ hierarchy

\leftarrow term by term convergence holds pointwise
Main Result 2. - Global in time PoC

Theorem 2 \[\text{[Colangeli, P., Pulvirenti '13]}\]

Let the initial data and the kernel \(B_{i,j}^{\omega}\) satisfy assumptions 1. – 3. and i) – iii), respectively. Then, for any \(t > 0\)

\[
\lim_{N \to +\infty, \delta \to 0} \left\| f_k^N(t) - (f(t)) \otimes_k \right\|_{L^1(\Lambda_k)} = 0, \quad \forall \text{ compact sets } \Lambda_k \subset \mathbb{R}^{3k}
\]

where \(f(t)\) is the \underline{unique} \(L^\infty\)-solution of the \(U-U\) equation with initial datum \(f_{\text{in}}\).

STRATEGY

\(\leftrightarrow\) concerning \(Q1.\): define a suitable norm \(\left\| \cdot \right\|_\delta\) s.t. \(\left\| f_k^N(t) \right\|_{\delta,k} \leq (c)^k \forall t\)

\(\leftrightarrow\) concerning \(Q2.\): the maximum principle provides a global \(L^\infty\)-control on the \(U-U\) hierarchy

\(\leftrightarrow\) term by term convergence holds \underline{pointwise}

\(\leftrightarrow\) \(L^1_{\text{loc}}\) makes the three topologies above to "match" well
Main Result 2. - Global in time PoC

Theorem 2 [Colangeli, P., Pulvirenti '13]

Let the initial data and the kernel $B_{i,j}^\omega$ satisfy assumptions 1. - 3. and i) – iii), respectively. Then, for any $t > 0$

$$\lim_{N \to +\infty, \delta \to 0, N\delta^3 = \alpha} \left\| f_k^N(t) - (f(t))^{\otimes k} \right\|_{L^1(\Lambda_k)} = 0, \quad \forall \text{ compact sets } \Lambda_k \subset \mathbb{R}^{3k}$$

where $f(t)$ is the unique L^∞-solution of the $U-U$ equation with initial datum f_{in}.

STRATEGY

\leftrightarrow concerning Q1.: define a suitable norm $\| \cdot \|_\delta$ s.t. $\| f_k^N(t) \|_{\delta,k} \leq (c)^k \forall t$

\leftrightarrow concerning Q2.: the maximum principle provides a global L^∞-control on the $U-U$ hierarchy

\leftrightarrow term by term convergence holds pointwise

$\leftrightarrow L^1_{loc}$ makes the three topologies above to ”match” well

\leftrightarrow convergence at $t > 0$ is WEAKER than that we require at $t = 0$: PILING UP \sum
Idea of the Proof of Thm 1. - HIERARCHIES

BBGKY hierarchy of \((N)\) eqns for the marginals \(\{f_N^k(t)\}\)

\[\frac{\partial}{\partial t} f_N^k = \frac{1}{N!} \sum_{L^N_k \in L_N^1} \left(f_{N+1}^k + f_{N+2}^s \right) \]

Defining the flow \(S_N^k(t)\): \(e^{L_N^k t N} \)

\[||S_k(t)|| \approx e^{k^2 C_B t N} \]

U-U hierarchy of \((1)\) eqns (formal limit of (4))

\[\frac{\partial}{\partial t} f_1^k = \sum_{s=1}^3 C_k^s, k+1 \approx O(k) \]

\(\approx\) quadratic term (classical Boltzmann opt.)

\[C_k^s, k+2 \approx O(k^2) \]

\(\approx\) cubic term (fermionic part in the U-U opt.)

\[C_k^s, k+3 = O(k^2) \]

\(\approx\) quartic term = 0 by symmetry

\[\frac{\partial}{\partial t} f_1^k = \sum_{s=1}^3 C_k^s, k+1 \]

Idea of the Proof of Thm 1. - HIERARCHIES

- **BBGKY hierarchy** of \((N)\) eqns for the marginals \(\{f^N_k(t)\}_k\)

\[
\partial_t f^N_k = \underbrace{\frac{1}{N} L^N_k f^N_k}_{O(\frac{k^2}{N}) \text{ in } L^\infty} + \underbrace{\frac{1}{N} \sum_{s=1}^2 L^N_{k,k+s} f^N_{k+s}}_{O(\frac{k^2}{N}) \text{ in } L^\infty} + \underbrace{\sum_{s=1}^3 C^N_{k,k+s} f^N_{k+s},}_{O(1) \text{ in } L^\infty} \quad k = 1, 2, \ldots, N
\]
Idea of the Proof of Thm 1. - HIERARCHIES

- **BBGKY hierarchy** of \((N)\) eqns for the marginals \(\{f_k^N(t)\}\)

\[
\partial_t f_k^N = \underbrace{\frac{1}{N} L_k^N f_k^N}_{O\left(\frac{k^2}{N}\right) \text{ "in } \mathcal{L}^\infty\text{"}} + \underbrace{\frac{1}{N} \sum_{s=1}^{2} L_{k,k+s}^N f_{k+s}^N}_{O\left(\frac{k^2}{N}\right) \text{ "in } \mathcal{L}^\infty\text{"}} + \underbrace{\sum_{s=1}^{3} C_{k,k+s}^N f_{k+s}^N}_{O(1) \text{ "in } \mathcal{L}^\infty\text{"}}, \quad k = 1, 2, \ldots, N \tag{4}
\]

\(\downarrow\) Defining the flow \(S_k^N(t) := e^{\frac{L_k^N t}{N}}\), we have \(\|S_k(t)\|_\infty \leq e^{\frac{k^2 c_B t}{N}}\)
Idea of the Proof of Thm 1. - HIERARCHIES

- **BBGKY hierarchy** of \((N)\) eqns for the marginals \(\{f_k^N(t)\}_k\)

\[
\partial_t f_k^N = \frac{1}{N} \left(\underbrace{L_k^N}_{O \left(\frac{k^2}{N} \right) \text{ "in } L^\infty \text{"}} \right) f_k^N + \frac{1}{N} \sum_{s=1}^{2} L_{k,k+s}^N f_{k+s}^N + \sum_{s=1}^{3} C_{k,k+s}^N f_{k+s}^N, \quad k = 1, 2, \ldots, N \tag{4}
\]

\(\mapsto\) Defining the flow \(S_k^N(t) := e^{\frac{L_k^N t}{N}}\), we have \(\|S_k(t)\|_\infty \leq e^{\frac{k^2 C_B t}{N}}\)

- **U-U hierarchy** of \((\infty)\) eqns (formal limit of (4))

\[
\partial_t f_k^\infty = \sum_{s=1}^{3} C_{k,k+s} f_{k+s}^\infty, \quad k = 1, 2, \ldots \tag{5}
\]

\(\mapsto\) \(C_{k,k+1} = O(k) \sim \text{quadratic term (classical Boltzmann opt.)},\)

\(\mapsto\) \(C_{k,k+2} = O(k \alpha) \sim \text{cubic term (fermionic part in the U-U opt.)},\)

\(\mapsto\) \(C_{k,k+3} = O(k \alpha^2) \sim \text{quartic term} = 0 \sim \text{by symmetry} \Rightarrow \partial_t f_k^\infty = \sum_{s=1}^{2} C_{k,k+s} f_{k+s}^\infty\)
Idea of the Proof of Thm 1. - DUHAMEL EXP $f^N_k(t)$
• Fix $M_1 > 0$. BBGKY hierarchy + (iterated) Duhamel formula

$$f_k^N(t) = \left[\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{O^N} \int dt_n S_k^N(t - t_1) O_{k,k+i(1)}^N S_{k+i(1)}^N(t_1 - t_2) \ldots \\
\ldots O_{k+i(n-1),k+i(n)}^N S_{k+i(n)}^N(t_n) f_{k+i(n)}^N(0) \right] + R_{M_1}^N(t), \quad (6)$$

where

\begin{itemize}
 \item $\int dt_n := \int_0^t dt_1 \ldots \int_0^{t_n-1} dt_n$
 \item $\sum_{j(1)\ldots j(n)} := \sum_{(j(1),\ldots,j(n))\in\{1,2,3\}^n}$ and $i(m) := \sum_{\ell=1}^m j(\ell), \quad \forall \ m = 1, \ldots, n$
 \item $\sum_{O^N} := \sum_{O_{k,k+i(1)}^N \ldots O_{k+i(n-1),k+i(n)}^N}^N$, with $O_{k+\ell,k+m}^N$ appearing in the BBGKY hierarchy
\end{itemize}
Idea of the Proof of Thm 1. - DUHAMEL EXP $f_k^N(t)$

- Fix $M_1 > 0$. BBGKY hierarchy + (iterated) Duhamel formula

$$f_k^N(t) = \left[\sum_{n=0}^{M_1} \sum_{j(1) \ldots j(n)} \sum_{O^N} \int dt_n S_k^N(t - t_1) O_{k,k+i(1)}^N S_{k+i(1)}^N(t_1 - t_2) \ldots$$

$$\ldots O_{k+i(n-1),k+i(n)}^N S_{k+i(n)}^N(t_n) f_{k+i(n)}^N(0) \right] + R_{M_1}^N(t), \quad (6)$$

where

- $\int dt_n := \int_0^t dt_1 \ldots \int_0^{t_{n-1}} dt_n,$

- $\sum_{j(1) \ldots j(n)} := \sum_{(j(1), \ldots, j(n)) \in \{1,2,3\}^n}$

- $\sum_{O^N} := \sum_{O_{k,k+i(1)}^N \ldots O_{k+i(n-1),k+i(n)}^N}$, with $O_{k+k,m}$ appearing in the BBGKY hierarchy

\iff Hyp. on $\{f_k^N(0)\}_k$ ($\Rightarrow ||f_k^N(0)||_{\infty} \leq (z_1)^k$) + Hyp. on B (\Rightarrow good estimates for O^N):

$$||R_{M_1}^N(t)||_{\infty} \leq (c_1)^k (\lambda)^{M_1}, \text{ with } \lambda < 1 \iff t < t_1^*,$$

where $t_1^* \sim \frac{1}{C_{B,\alpha}(z_1)}.$
Idea of the Proof of Thm 1. - Term by Term convergence

• Hyp. on the initial data + Hyp. on each term of the (finite) sum in (6) converges pointwise to:

\[X_j^{(1)} \ldots X_j^{(n)} \]

\[O_k^{(1)} + i^{(1)} \]

\[O_k^{(2)} + i^{(2)} \ldots O_k^{(n_1)} + i^{(n)} \]

in \(\mathcal{A} \)

where

\[\mathcal{A} = X_{j^{(1)}, \ldots, j^{(n)}}^{2} \{1, 2\}^{n} \]

and

\[i^{(m)} = m \]

\[\mathcal{A} = X_{O_k^{(1)} + i^{(1)}, \ldots, O_k^{(n_1)} + i^{(n)}}^{\mathcal{A}} \mathcal{A} \]

with \(O_k^{(1)}, \ldots, O_k^{(n_1)} \) appearing in the U-U hierarchy

Why only pointwise?

Because we have to deal with:

\[\int v_1 dv_2 \int d!_1 \]

\[\int v_1, v_2, ! \]

\[|v_1, v_2, !| = 3 \]

\[dw g(v_1 \mapsto v_2 \mapsto v_3 \mapsto !) \]

for some \(g \in C_0^0 \). The above convergence is proven by the Lebesgue Dominated Convergence thm and we have NO control on "what happens" wrt to \(v_1 \) (beyond pointwise convergence) "quantum effect".
Idea of the Proof of Thm 1. - Term by Term convergence

• Hyp. on the initial data + Hyp. on $B \Rightarrow$ each term of the (finite) sum in (6) converges pointwise to:

$$\sum_{j(1)\ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes(k+i(n))},$$

(7)

where

$$\cdot \sum_{j(1)\ldots j(n)} := \sum_{(j(1),\ldots,j(n))\in\{1,2\}^n}$$

$$\cdot \sum_{O} := \sum_{O_{k,k+i(1)}\cdots O_{k+i(n-1),k+i(n)}}$$

and $i(m) := \sum_{\ell=1}^{m} j(\ell), \forall \ m = 1, \ldots, n$

with $O_{k+\ell,k+m}$ appearing in the U-U hierarchy.
Idea of the Proof of Thm 1. - Term by Term convergence

• Hyp. on the initial data + Hyp. on B ⇒ each term of the (finite) sum in (6) converges pointwise to:

$$
\sum_{j(1)\ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes(k+i(n))},
$$

where

- $\sum_{j(1)\ldots j(n)} := \sum_{(j(1),\ldots,j(n))\in\{1,2\}^n}$
- $\sum_{O} := \sum_{O_{k,k+i(1)}\cdots O_{k+i(n-1),k+i(n)}}$

Why only "pointwise"?

Because we have to deal with:

$$
\int dv_2 \int d\omega \left(\frac{1}{\delta^3} \int_{\Delta_{v_1,v_2,v_3}:|\Delta_{v_1,v_2,v}|=\delta^3} dw \, g(v_1, v_2, w, \omega) \right) \rightarrow \int dv_2 \int d\omega \, g(v_1, v_2, v_3, \omega)
$$

for some $g \in C^0$. The above convergence is proven by the Lebesgue Dominated Convergence thm and we have NO control on "what happens" wrt to v_1 (beyond pointwise convergence) \(\rightsquigarrow "quantum\ \text{effect}"\).
Idea of the Proof of Thm 1. - DUHAMEL EXP $f_k^\infty(t)$
Therefore, the (finite) sum in (6) converges pointwise to:

\[
\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes (k+i(n))}.
\]
Therefore, the (finite) sum in (6) converges pointwise to:

\[
\sum_{n=0}^{M_1} \sum_{j(1) \ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes (k+i(n))}.
\]

(8)

Consider the k-particle function defined as:

\[
\sum_{n=0}^{M_1} \sum_{j(1) \ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes (k+i(n))} + R_{M_1}(t),
\]

(9)

where $R_{M_1}(t) := \sum_{n=0}^{+\infty} - \sum_{n=0}^{M_1}$.
Therefore, the (finite) sum in (6) converges pointwise to:

\[\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \ldots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes (k+i(n))}. \]

(8)

Consider the k-particle function defined as:

\[\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \ldots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes (k+i(n))} + R_{M_1}(t), \]

(9)

where $R_{M_1}(t) := \sum_{n=0}^{+\infty} - \sum_{n=0}^{M_1}$.

\leftrightarrow Hyp. on f_{in} ($\Rightarrow ||f_{in}||_\infty \leq \frac{1}{\alpha}$) + Hyp. on B (\Rightarrow good estimates for O)

\[||R_{M_1}(t)||_\infty \leq (\tilde{c}_1)^k (\tilde{\lambda})^n, \text{ with } \tilde{\lambda} < 1 \text{ IFF } t < t^*_2, \text{ where } t^*_2 \sim \frac{1}{C_{B,\alpha} (\frac{1}{\alpha})} \]
Idea of the Proof of Thm 1. - DUHAMEL EXP \(f_k^\infty(t) \)

- Therefore, the (finite) sum in (6) converges pointwise to:

\[
\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{\mathcal{O}} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes(k+i(n))}.
\]

(8)

Consider the \(k \)-particle function defined as:

\[
\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{\mathcal{O}} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes(k+i(n))} + R_{M_1}(t),
\]

(9)

where \(R_{M_1}(t) := \sum_{n=0}^{+\infty} - \sum_{n=0}^{M_1} \).

\(\leftrightarrow \) Hyp. on \(f_{in} (\Rightarrow ||f_{in}||_\infty \leq \frac{1}{\alpha}) \) + Hyp. on \(B (\Rightarrow \text{good estimates for } O) \)

\[
||R_{M_1}(t)||_\infty \leq (\tilde{c}_1)^k (\tilde{\lambda})^n, \text{ with } \tilde{\lambda} < 1 \text{ IFF } t < t_2^*, \text{ where } t_2^* \sim \frac{1}{C_{B,\alpha} \left(\frac{1}{\alpha}\right)}
\]

Remark: Defining \(t_0 := \min\{t_1^*, t_2^*\} \Rightarrow \text{for } t \in [0, t_0) \text{ BOTH exps are bounded!} \)
Therefore, the (finite) sum in (6) converges pointwise to:

\[
\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes(k+i(n))}.
\] (8)

Consider the \(k\)-particle function defined as:

\[
\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in}^{\otimes(k+i(n))} + R_{M_1}(t),
\] (9)

where \(R_{M_1}(t) := \sum_{n=0}^{\infty} - \sum_{n=0}^{M_1} \).

\(\Rightarrow\) Hyp. on \(f_{in}\) (\(\Rightarrow\) \(\|f_{in}\|_{\infty} \leq \frac{1}{\alpha}\)) + Hyp. on \(B\) (\(\Rightarrow\) good estimates for \(O\))

\[\|R_{M_1}(t)\|_{\infty} \leq (\tilde{c}_1)^k (\tilde{\lambda})^n, \text{ with } \tilde{\lambda} < 1 \text{ IFF } t < t_2^*, \text{ where } t_2^* \sim \frac{1}{C_{B,\alpha} \left(\frac{1}{\alpha}\right)}\]

Remark: Defining \(t_0 := \min\{t_1^*, t_2^*\} \Rightarrow \text{for } t \in [0, t_0) \text{ BOTH exps are bounded!} \)

\(\Rightarrow\) By a direct check one gets that (9) solves the U-U hierarchy with in. datum \(\{f_{in}^{\otimes k}\}_k\)
Therefore, the (finite) sum in (6) converges pointwise to:

$$
\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in} \otimes (k+i(n))
$$

Consider the k-particle function defined as:

$$
\sum_{n=0}^{M_1} \sum_{j(1)\ldots j(n)} \sum_{O} \frac{t^n}{n!} O_{k,k+i(1)} O_{k+i(1),k+i(2)} \cdots O_{k+i(n-1),k+i(n)} f_{in} \otimes (k+i(n)) + R_{M_1}(t), \quad (9)
$$

where $R_{M_1}(t) := \sum_{n=0}^{\infty} - \sum_{n=0}^{M_1}$.

\hookrightarrow Hyp. on f_{in} ($\Rightarrow ||f_{in}||_{\infty} \leq \frac{1}{\alpha}$) + Hyp. on B (\Rightarrow good estimates for O)

$$
||R_{M_1}(t)||_{\infty} \leq (\tilde{c}_1)^k (\tilde{\lambda})^n, \text{ with } \tilde{\lambda} < 1 \text{ IFF } t < t_2^*, \quad \text{where } t_2^* \sim \frac{1}{C_{B,\alpha} (\frac{1}{\alpha})}
$$

Remark: Defining $t_0 := \min\{t_1^*, t_2^*\}$ \Rightarrow for $t \in [0, t_0)$ BOTH exps are bounded!

\hookrightarrow By a direct check one gets that (9) solves the U-U hierarchy with in. datum $\{f_{in} \otimes k\}_k$

\hookrightarrow By the uniqueness of L^∞-solns in the class $\{f_k : ||f_k||_{\infty} \leq (c)^k\}$: $(f(t)) \otimes k = (9)$
Idea of the Proof of Thm 1. - Short time Convergence

\[
E_1^k(t) = P_{M_1} n=0 E_n(t) f(k + i(n)) + R_{M_1}(t) \hookrightarrow \text{with } ||R_{M_1}(t)||_1 \leq c_1 k M_1,\]

\[
E_2^k(t) = P_{M_1} n=0 E_n(t) f(k + i(n)) \text{ in } R_{M_1}(t) \hookrightarrow \text{with } ||R_{M_1}(t)||_1 \leq e c_1 k M_1,\]

If \(t < t_0 \) and \(e < 1 \), then the bound on the remainders are uniform in \(N \) and \(E_n(t) f(k + i(n))! E_n(t) f(k + i(n)) \text{ in pointwise as } N!1 \hookrightarrow 0 \hookrightarrow N \) and

\[
R_{M_1}(0) \leq c_1 k M_1,\]

\[
||f(k + i(n))||_1 \leq e c_1 k M_1,\]

Concerning \(E_2 \), we know that

\[
||f(t)||_1 \leq e c_1 k M_1,\]

\[
||f(t)||_1 \leq e c_1 k M_1 \hookrightarrow 8 t|z| \{z, \}
\]

Maximum Principle for \(U \).
Idea of the Proof of Thm 1. - Short time Convergence

\[\begin{align*}
E1. \quad f_k^N(t) &= \sum_{n=0}^{M_1} E_n^N(t) f_{k+i(n)}^N(0) + R_{M_1}^N(t), \quad \text{with} \quad \|R_{M_1}^N(t)\|_\infty \leq (c_1)^k (\lambda)^{M_1}, \\
E2. \quad (f(t))^{\otimes k} &= \sum_{n=0}^{M_1} E_n(t) f_{in}^{\otimes (k+i(n))} + R_{M_1}(t), \quad \text{with} \quad \|R_{M_1}(t)\|_\infty \leq (\tilde{c}_1)^k (\tilde{\lambda})^{M_1}
\end{align*} \]

- \(t < t_0 \) \Rightarrow \lambda < 1 \text{ and } \tilde{\lambda} < 1

- the bound on the remainders are UNIFORM in \(N \) and \(\delta \)

- \(E_n^N(t) f_{k+i(n)}^N(0) \rightarrow E_n(t) f_{in}^{\otimes (k+i(n))} \) pointwise as \(N \rightarrow \infty, \delta \rightarrow 0, N\delta^3 = \alpha \)
Idea of the Proof of Thm 1. - Short time Convergence

\[f_k^N(t) = \sum_{n=0}^{N} e_n^N(t) f_{k+i(n)}^N(0) + R_{M_1}^N(t), \quad \text{with} \quad \|R_{M_1}^N(t)\|_\infty \leq (c_1)^k (\lambda)^{M_1}, \]

\[(f(t))^{\otimes k} = \sum_{n=0}^{N} e_n(t) f_{in}^{\otimes (k+i(n))} + R_{M_1}(t), \quad \text{with} \quad \|R_{M_1}(t)\|_\infty \leq (\tilde{c}_1)^k (\tilde{\lambda})^{M_1} \]

\[t < t_0 \Rightarrow \lambda < 1 \text{ and } \tilde{\lambda} < 1 \]

\[\text{the bound on the remainders are UNIFORM in } N \text{ and } \delta \]

\[e_n^N(t) f_{k+i(n)}^N(0) \rightarrow e_n(t) f_{in}^{\otimes (k+i(n))} \text{ pointwise as } N \rightarrow \infty, \delta \rightarrow 0, N\delta^3 = \alpha \]

\[f_k^N(t) \rightarrow (f(t))^{\otimes k} \text{ pointwise for } t < t_0 \]

\[\|f_k^N(0)\|_\infty \leq (z_1)^k \text{ and } \|f_{in}^{\otimes k}\|_\infty \leq (\frac{1}{\alpha})^k \]
Idea of the Proof of Thm 1. - Short time Convergence

\[E1. \quad f_k^N(t) = \sum_{n=0}^{M_1} \mathcal{E}_n^N(t) f_{k+i(n)}(0) + R_{M_1}^N(t), \quad \text{with} \quad \|R_{M_1}^N(t)\|_\infty \leq (c_1)^k (\lambda)^{M_1}, \]

\[E2. \quad (f(t))^\otimes k = \sum_{n=0}^{M_1} \mathcal{E}_n(t) f_{in}^{(k+i(n))} + R_M(t), \quad \text{with} \quad \|R_M(t)\|_\infty \leq (\tilde{c}_1)^k (\tilde{\lambda})^{M_1}. \]

\[\begin{align*}
& \Rightarrow \quad t < t_0 \quad \Rightarrow \quad \lambda < 1 \quad \text{and} \quad \tilde{\lambda} < 1 \\
& \Rightarrow \quad \text{the bound on the remainders are UNIFORM in } N \text{ and } \delta \\
& \Rightarrow \quad \mathcal{E}_n^N(t) f_{k+i(n)}(0) \longrightarrow \mathcal{E}_n(t) f_{in}^{(k+i(n))} \quad \text{pointwise as } N \to \infty, \delta \to 0, N\delta^3 = \alpha \\
\end{align*} \]

\[f_k^N(t) \to (f(t))^\otimes k \quad \text{pointwise for } \quad \begin{cases} t < t_0 \\ \|f_k^N(0)\|_\infty \leq (z_1)^k \quad \text{and} \quad \|f_{in}^{\otimes k}\|_\infty \leq (\frac{1}{\alpha})^k \end{cases} \]

RMK: the short time constraint comes ONLY from the control of \(E1. \): \(\|f_k^N(t)\|_\infty \leq ?? \)
Idea of the Proof of Thm 1. - Short time Convergence

\[E1. \quad f^N_k(t) = \sum_{n=0}^{M_1} \mathcal{E}^n(t) f^N_{k+i(n)}(0) + R^N_{M_1}(t), \quad \text{with} \quad \|R^N_{M_1}(t)\|_{\infty} \leq (c_1)^k (\lambda)^{M_1}, \]

\[E2. \quad (f(t))^{\otimes k} = \sum_{n=0}^{M_1} \mathcal{E}^n(t) f^{\otimes (k+i(n))}_{in} + R_{M_1}(t), \quad \text{with} \quad \|R_{M_1}(t)\|_{\infty} \leq (\tilde{c}_1)^k (\tilde{\lambda})^{M_1} \]

\[\begin{align*}
&\quad \quad \begin{cases}
\text{if } t < t_0 \Rightarrow \lambda < 1 \text{ and } \tilde{\lambda} < 1 \\
\text{the bound on the remainders are UNIFORM in } N \text{ and } \delta \\
\text{pointwise as } N \to \infty, \delta \to 0, N\delta^3 = \alpha
\end{cases}
\end{align*} \]

\[f^N_k(t) \to (f(t))^{\otimes k} \quad \text{pointwise for } \begin{cases} t < t_0 \end{cases} \]

\[\|f^N_k(0)\|_{\infty} \leq (z_1)^k \quad \text{and} \quad \|f^{\otimes k}_{in}\|_{\infty} \leq \left(\frac{1}{\alpha}\right)^k \]

RMK: the short time constraint comes ONLY from the control of \(E1. \): \[\|f^N_k(t)\|_{\infty} \leq ?? \]

\[\begin{align*}
&\quad \quad \begin{cases}
\text{concerning } E2., \text{ we know that } \|f_{in}\|_{\infty} \leq \frac{1}{\alpha} \Rightarrow \|f(t)\|_{\infty} \leq \frac{1}{\alpha}, \quad \forall t
\end{cases}
\end{align*} \]

\[\text{MAXIMUM PRINCIPLE for } U - U \]
Idea of the Proof of Thm 2. - The norm $\| \cdot \|_{\delta}$

For any $k = 1 \to 2 \to \ldots \to N$, we define the following norm:

$$\| g_k \|, \quad k := \sup_{1 \leq 1 \leq k_{13}} \ldots \sup_{1 \leq 1 \leq k_{13}k} Z_1 \ldots Z_k | g_k(V_k) | \to$$

for any $g_k : \mathbb{R}^{3k} \to \mathbb{R}$.

It is easy to check that:

• For any k a compact set $\cdot \mapsto R^{3k}$ there exists a positive constant $C_k < +1$ such that:

$$k g_k L_1(\cdot) \leq C_k g_k, \quad k \to$$

for any $g_k : \mathbb{R}^{3k} \to \mathbb{R}$.

Moreover:

• All L_1-estimates we have for the operators in the BBGKY hierarchy hold as well wrt $\| \cdot \|$(not completely trivial......)

• $\sup W_N(t) \mapsto A_N$ for any $t \geq 0$.

$| | f_N(t) | |, \quad k < \mapsto e^{2/c_k} \forall t \geq 0$ and $k < 1$.

The uniform boundedness argument WORKS as well and now it CAN be iterated! (in a clever way......)
Idea of the Proof of Thm 2. - The norm $|| \cdot ||_\delta$

For any $k = 1, 2, \ldots, N$, we define the following norm:

$$|| g_k ||_{\delta,k} := \sup_{\Delta_1 \ldots \Delta_k} \frac{1}{\delta^{3k}} \int_{\Delta_1} dv_1 \ldots \int_{\Delta_k} dv_k |g_k(V_k)|, \quad \text{for any } g_k : \mathbb{R}^{3k} \to \mathbb{R} \quad (10)$$
Idea of the Proof of Thm 2. - The norm $|| \cdot ||_\delta$

For any $k = 1, 2, \ldots, N$, we define the following norm:

$$||g_k||_{\delta, k} := \sup_{\Delta_1 \ldots \Delta_k} \frac{1}{\delta^{3k}} \int_{\Delta_1} dv_1 \ldots \int_{\Delta_k} dv_k |g_k(V_k)|,$$

for any $g_k : \mathbb{R}^{3k} \to \mathbb{R}$ (10)

It is easy to check that:

- For any $k \geq 1$ and any compact set $\Lambda_k \subset \mathbb{R}^{3k}$ there exists a positive constant $C_{\Lambda_k} < +\infty$ such that:

$$||g_k||_{L^1(\Lambda_k)} \leq C_{\Lambda_k} ||g_k||_{\delta, k}, \quad \forall \ g_k : \mathbb{R}^{3k} \to \mathbb{R}$$

(11)
Idea of the Proof of Thm 2. - The norm $|| \cdot ||_\delta$

For any $k = 1, 2, \ldots, N$, we define the following norm:

$$
||g_k||_{\delta,k} := \sup_{\Delta_1 \ldots \Delta_k} \frac{1}{\delta^{3k}} \int_{\Delta_1} dv_1 \ldots \int_{\Delta_k} dv_k |g_k(V_k)|, \quad \text{for any } g_k : \mathbb{R}^{3k} \to \mathbb{R} \quad (10)
$$

It is easy to check that:

- For any $k \geq 1$ and any compact set $\Lambda_k \subset \mathbb{R}^{3k}$ there exists a positive constant $C_{\Lambda_k} < +\infty$ such that:

$$
||g_k||_{L^1(\Lambda_k)} \leq C_{\Lambda_k} ||g_k||_{\delta,k}, \quad \forall \ g_k : \mathbb{R}^{3k} \to \mathbb{R} \quad (11)
$$

Moreover:

- ALL L^∞-estimates we have for the operators in the BBGKY hierarchy hold as well wrt $|| \cdot ||_\delta$ (*not completely trivial......*)
For any $k = 1, 2, \ldots, N$, we define the following norm:

$$\|g_k\|_{\delta,k} := \sup_{\Delta_1 \ldots \Delta_k} \frac{1}{\delta^{3k}} \int_{\Delta_1} \cdots \int_{\Delta_k} dv_1 \cdots dv_k \ |g_k(V_k)|,$$

for any $g_k : \mathbb{R}^{3k} \rightarrow \mathbb{R}$ \hspace{1cm} (10)

It is easy to check that:

- For any $k \geq 1$ and any compact set $\Lambda_k \subset \mathbb{R}^{3k}$ there exists a positive constant $C_{\Lambda_k} < +\infty$ such that:

$$\|g_k\|_{L^1(\Lambda_k)} \leq C_{\Lambda_k} \|g_k\|_{\delta,k}, \quad \forall \ g_k : \mathbb{R}^{3k} \rightarrow \mathbb{R}$$

(11)

Moreover:

- **ALL L^∞-estimates we have for the operators in the BBGKY hierarchy** hold as well wrt $\| \cdot \|_{\delta}$ *(not completely trivial......)*

- supp $W^N(t) \subseteq A^N_\delta$ for any $t \geq 0$ \hspace{1cm} \Rightarrow \hspace{1cm} $\|f^N_k(t)\|_{\delta,k} < \left(\frac{e^2}{\alpha} \right)^k$, \quad $\forall \ t \geq 0$ and $k \geq 1$
For any $k = 1, 2, \ldots, N$, we define the following norm:

$$||g_k||_{\delta,k} := \sup_{\Delta_1 \cdots \Delta_k} \frac{1}{\delta^{3k}} \int_{\Delta_1} dv_1 \cdots \int_{\Delta_k} dv_k |g_k(V_k)|, \quad \text{for any } g_k : \mathbb{R}^{3k} \to \mathbb{R} \quad (10)$$

It is easy to check that:

- For any $k \geq 1$ and any compact set $\Lambda_k \subset \mathbb{R}^{3k}$ there exists a positive constant $C_{\Lambda_k} < +\infty$ such that:

$$\|g_k\|_{L^1(\Lambda_k)} \leq C_{\Lambda_k} \|g_k\|_{\delta,k}, \quad \forall \ g_k : \mathbb{R}^{3k} \to \mathbb{R} \quad (11)$$

Moreover:

- **ALL L^∞ estimates** we have for the operators in the BBGKY hierarchy hold as well wrt $\| \cdot \|_\delta$ (*not completely trivial.....*)

- $\text{supp } W^N(t) \subseteq A^N_\delta$ for any $t \geq 0 \Rightarrow \|f^N_k(t)\|_{\delta,k} < \left(\frac{e^2}{\alpha} \right)^k, \quad \forall \ t \geq 0 \text{ and } k \geq 1$

\Rightarrow **The uniform boundedness argument WORKS** as well and now it CAN be iterated! (*in a clever way...*)
For any $t > 0$, we partition the interval $[0 \rightarrow t]$ into intervals of fixed amplitude $\tau < t_0(\epsilon) \leq 1 \epsilon 2^{\epsilon} \epsilon$. Clearly, $s = t \tau > t_0(\epsilon)$.

Iterating s times the argument discussed in Thm 1, we get:

$$f^N_k(t) = M_1 \sum_{n_1=0} M_2 \sum_{n_2=0} \cdots M_s \sum_{n_s=0} E^N_{n_1}(\tau) E^N_{n_2}(\tau) \cdots E^N_{n_s}(\tau) f^N_k(0) + R^N_{M_1}(V^k \rightarrow t) + R^N_{M_2}(V^k \rightarrow t) + \cdots + R^N_{M_s}(V^k \rightarrow t)$$

where $I((n_1 \rightarrow \cdots \rightarrow n_s)) := P_s \sum_{i=1}^s i(n_i)$.

Moreover, by choosing $M_2 \rightarrow \cdots \rightarrow M_s$ sufficiently large (precise condition), for any $n_1 \rightarrow \cdots \rightarrow s$ we have:

$$|R^N_{M_\eta}(t)| \leq k \frac{(c_\eta)}{k(\epsilon)} M_\eta \eta \rightarrow 1$$

and $\tau < t_0(\epsilon)$.
Idea of the Proof of Thm 2. - PILING UP ∑ for $f^N_k(t)$

For any $t > 0$, we partition the interval $[0, t]$ in s intervals of fixed amplitude $\tau < t_0(\alpha) \sim \frac{1}{c_B,\alpha \left(\frac{e^2}{\alpha}\right)}$. Clearly, $s = \frac{t}{\tau} > \frac{t}{t_0(\alpha)} := s_0$. Iterating s times the argument discussed in Thm 1, we get:

$$f^N_k(t) = \sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} E^{N}_{n_1}(\tau) E^{N}_{n_2}(\tau) \cdots E^{N}_{n_s}(\tau) f^N_{k+l(n_1, \ldots, n_s)}(0) +$$

$$+ R^{N}_{M_s}(V_k, t) + R^{N}_{M_{s-1}}(V_k, t) + \cdots + R^{N}_{M_1}(V_k, t), \quad (12)$$

where $I(n_1, \ldots, n_s) := \sum_{\ell=1}^{s} i(n_\ell)$.

Moreover, by choosing $M_2 \hookrightarrow \cdots \hookrightarrow M_s$ sufficiently large (precise condition), for any $\ell = 1 \hookrightarrow \cdots \hookrightarrow s$ we have:

$$||R^{N}_{M_\ell}(t)||, k \leq (c_\ell) k \left(\frac{\tau}{\Theta}\right) M_\ell \hookrightarrow$$

for some $c_\ell > 0$.
For any $t > 0$, we partition the interval $[0, t]$ in s intervals of fixed amplitude $\tau < t_0(\alpha) \sim \frac{1}{c_{B, \alpha} \left(\frac{e^2}{\alpha} \right)}$. Clearly, $s = \frac{t}{\tau} > \frac{t}{t_0(\alpha)} := s_0$. Iterating s times the argument discussed in Thm 1, we get:

\[
f_k^N(t) = \sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}^N(\tau) \mathcal{E}_{n_2}^N(\tau) \cdots \mathcal{E}_{n_s}^N(\tau)f_{k+l(n_1, \ldots, n_s)}^N(0) + \]

\[
+ \quad R_{M_s}^N(V_k, t) + R_{M_{s-1}}^N(V_k, t) + \cdots + R_{M_1}^N(V_k, t), \tag{12}
\]

where $I(n_1, \ldots, n_s) := \sum_{\ell=1}^{s} i(n_\ell)$. Moreover, by choosing M_2, \ldots, M_s sufficiently large (precise condition), for any $\ell = 1, \ldots, s$ we have:

\[
||R_{M_\ell}^N(t)||_{\delta, k} \leq (c_\ell)^k (\lambda_\alpha)^{M_\ell \ell}, \quad \text{for some } c_\ell > 0 \tag{13}
\]

and

\[
\tau < t_0(\alpha) \Rightarrow \lambda_\alpha < 1
\]
Idea of the Proof of Thm 2. - PILING UP \sum for $f_k^N(t)$

For any $t > 0$, we partition the interval $[0, t]$ in s intervals of fixed amplitude $\tau < t_0(\alpha) \sim \frac{1}{c_B,\alpha \left(\frac{\varepsilon^2}{\alpha}\right)}$. Clearly, $s = \frac{t}{\tau} > \frac{t}{t_0(\alpha)} := s_0$. Iterating s times the argument discussed in Thm 1, we get:

$$f_k^N(t) = \sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}^N(\tau) \mathcal{E}_{n_2}^N(\tau) \cdots \mathcal{E}_{n_s}^N(\tau) f_{k+l(n_1,\ldots,n_s)}^N(0) +$$

$$+ R_{M_1}^N(V_k, t) + R_{M_{s-1}}^N(V_k, t) + \cdots + R_{M_1}^N(V_k, t), \quad (12)$$

where $l(n_1,\ldots,n_s) := \sum_{\ell=1}^s i(n_\ell)$. Moreover, by choosing M_2,\ldots, M_s sufficiently large (precise condition), for any $\ell = 1,\ldots,s$ we have:

$$||R_{M_\ell}^N(t)||_{\delta,k} \leq (c_\ell)^k (\lambda_\alpha)^{M_\ell / \ell}, \quad \text{for some } c_\ell > 0 \quad (13)$$

and

$$\tau < t_0(\alpha) \Rightarrow \lambda_\alpha < 1$$

HINTS:
We need to "reach" $t = 0 + M_2,\ldots, M_s$ large is crucial to make the amplitude τ FIXED
Idea of the Proof of Thm 2. - PILING UP \sum for $(f(t))^\otimes k$

Since term by term convergence holds (see Thm 1), the (finite) sums in (12) converge pointwise to:

$$M_1 X_{n_1} = 0 \quad M_2 X_{n_2} = 0 \quad \cdots \quad M_s X_{n_s} = 0 \quad E_{n_1}(\tau) \quad E_{n_2}(\tau) \quad \cdots \quad E_{n_s}(\tau) f(\tau)$$

in (14)

Consider the k-particle function:

$$M_1 X_{n_1} = 0 \quad M_2 X_{n_2} = 0 \quad \cdots \quad M_s X_{n_s} = 0 \quad E_{n_1}(\tau) \quad E_{n_2}(\tau) \quad \cdots \quad E_{n_s}(\tau) f(\tau)$$

in $+ R M_s(t) + \cdots + R M_1(t) \hookrightarrow (15)$

where $R M_1(t) := P^1_{n_1=1} M_1 + 1 E_{n_1}(\tau) f(\tau) \hookrightarrow (k+i(n_1, \ldots, n_s))$ and the other remainders are computed recursively.

Choosing $M_2 \hookrightarrow \cdots \hookrightarrow M_s$ as before, for any $` = 1 \hookrightarrow \cdots \hookrightarrow s$ we have:

$$||R M_` (t)||_1 \leq (c_0`)^{k(`)} M` \hookrightarrow \text{ for some } c_0` > 0 \quad (16)$$

By a direct check one gets that (15) solves the U-U hierarchy with in. datum $\{f(\tau)\}$

By the uniqueness of L_1-solns in the class $\{f_k:\ ||f_k||_1 \leq (c_k)\}$, $(f(t))$.
Since term by term convergence holds (see Thm 1), the (finite) sums in (12) converge pointwise to:

\[
\sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) f_{\text{in}}^{\otimes (k+I(n_1,\ldots,n_s))} \]

(14)
Since term by term convergence holds (see Thm 1), the (finite) sums in (12) converge pointwise to:

$$
\sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) f_{i^n}^{\otimes (k+I(n_1, \ldots, n_s))}
$$

(14)

Consider the k-particle function:

$$
\sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) f_{i^n}^{\otimes (k+I(n_1, \ldots, n_s))} + R_{M_s}(t) + \cdots + R_{M_1}(t),
$$

(15)

where $R_{M_1}(t) := \sum_{n_1=M_1+1}^{\infty} \mathcal{E}_{n_1}(\tau) (f(t - \tau))^{\otimes (k+I(n_1))}$ and the other remainders are computed recursively.
Since term by term convergence holds (see Thm 1), the (finite) sums in (12) converge pointwise to:

$$\sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) f_{in}^{\otimes (k+i(n_1,\ldots,n_s))}$$ \hspace{1cm} (14)

Consider the k-particle function:

$$\sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) f_{in}^{\otimes (k+i(n_1,\ldots,n_s))} + R_{M_s}(t) + \cdots + R_{M_1}(t), \hspace{1cm} (15)$$

where $R_{M_1}(t) := \sum_{n_1=M_1+1}^{\infty} \mathcal{E}_{n_1}(\tau) (f(t-\tau))^{\otimes (k+i(n_1))}$ and the other remainders are computed recursively. Choosing M_2, \ldots, M_s as before, for any $\ell = 1, \ldots, s$ we have:

$$\|R_{M_\ell}(t)\|_\infty \leq (c'_\ell)^k (\lambda_\alpha)^{M_\ell / \ell}, \hspace{1cm} \text{for some } c'_\ell > 0 \hspace{1cm} (16)$$
Since term by term convergence holds (see Thm 1), the (finite) sums in (12) converge pointwise to:

\[
\sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) \cdot f_{in}^{\otimes (k+I(n_1,\ldots,n_s))}
\]

(14)

Consider the \(k \)-particle function:

\[
\sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) \cdot f_{in}^{\otimes (k+I(n_1,\ldots,n_s))} + R_{M_s}(t) + \cdots + R_{M_1}(t),
\]

(15)

where \(R_{M_1}(t) := \sum_{n_1=M_1+1}^{\infty} \mathcal{E}_{n_1}(\tau) \cdot (f(t - \tau))^{\otimes (k+I(n_1))} \) and the other remainders are computed recursively. Choosing \(M_2,\ldots,M_s \) as before, for any \(\ell = 1,\ldots,s \) we have:

\[
\|R_{M_\ell}(t)\|_\infty \leq (c'_\ell)^k \cdot (\lambda_\alpha)^{\frac{M_\ell}{\ell}}, \quad \text{for some } c'_\ell > 0
\]

(16)

\(\rightarrow \) By a direct check one gets that (15) solves the U-U hierarchy with in. datum \(\{f_{in}^{\otimes_k}\}_k \)
Since term by term convergence holds (see Thm 1), the (finite) sums in (12) converge pointwise to:

$$
\sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) f_{in}^{\otimes (k+I(n_1,\ldots,n_s))}
$$

Consider the k-particle function:

$$
\sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) f_{in}^{\otimes (k+I(n_1,\ldots,n_s))} + R_{M_s}(t) + \cdots + R_{M_1}(t), \tag{15}
$$

where $R_{M_1}(t) := \sum_{n_1=M_1+1}^{\infty} \mathcal{E}_{n_1}(\tau) (f(t - \tau))^{\otimes (k+I(n_1))}$ and the other remainders are computed recursively. Choosing M_2, \ldots, M_s as before, for any $\ell = 1, \ldots, s$ we have:

$$
\|R_{M_\ell}(t)\|_{\infty} \leq (c'_\ell)^k (\lambda_\alpha)^{M_\ell / \ell}, \quad \text{for some } c'_\ell > 0 \tag{16}
$$

\rightarrow By a direct check one gets that (15) solves the U-U hierarchy with in. datum $\{f_{in}^{\otimes k}\}_k$

\rightarrow By the uniqueness of L^∞-solns in the class $\{f_k : \|f_k\|_{\infty} \leq (c)^k\}$: $$(f(t))^{\otimes k} = (15)$$
Idea of the Proof of Thm 2. - Global in time Convergence

\[f(N_k(t)) = P_{M_1} n_1 = 0 P_{M_2} n_2 = 0 \cdots P_{M_s} n_s = 0 E_{N_1}(\tau) E_{N_2}(\tau) \cdots E_{N_s}(\tau) f(\infty) + I(n_1, \ldots, n_s)(0) + P_{s=1} R_{M_s}(t), \]

where, for any \(s \) \(\triangleleft \cdots \triangleleft \), there exists \(c_s \triangleleft c_0 > 0 \) such that

\[\| R_{M_s}(t) \| \leq k \| \tau \| M_s \triangleleft \| R_{M_s}(t) \| \leq (c_0 \| \tau \| M_s \triangleleft 1 I \]
Idea of the Proof of Thm 2. - Global in time Convergence

E1. \(f_k^N(t) = \sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}^N(\tau) \mathcal{E}_{n_2}^N(\tau) \cdots \mathcal{E}_{n_s}^N(\tau) f_{k+I(n_1,\ldots,n_s)}(0) + \sum_{\ell=1}^{s} R_{M_{\ell}}^N(t) \)

E2. \((f(t))^{\otimes k} = \sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} \mathcal{E}_{n_1}(\tau) \mathcal{E}_{n_2}(\tau) \cdots \mathcal{E}_{n_s}(\tau) f_{(k+I(n_1,\ldots,n_s))}^{\otimes k} + \sum_{\ell=1}^{s} R_{M_{\ell}}(t) \)

where, for any \(\ell = 1,\ldots,s \), there exist \(c_\ell, c'_\ell > 0 \) s. t.

\[||R_{M_{\ell}}^N(t)||_{\delta,k} \leq (c_\ell)^k (\lambda_\alpha) \frac{M_\ell}{\ell}, \quad ||R_{M_{\ell}}(t)||_{\infty} \leq (c'_\ell)^k (\lambda_\alpha) \frac{M_\ell}{\ell} \]

\(\lambda_\alpha < 1 \)

\(\triangleright \) the bound on the remainders are UNIFORM in \(N \) and \(\delta \)

\(\triangleright \) pointwise as \(N \to \infty, \delta \to 0, N\delta^3 = \alpha \) AND both strings are unif. bounded (see Thm 1)
Idea of the Proof of Thm 2. - Global in time Convergence

\[E_1. \quad f_k^N(t) = \sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} E_{n_1}^N(\tau) E_{n_2}^N(\tau) \cdots E_{n_s}^N(\tau) f_{k+l(n_1,\ldots,n_s)}(0) + \]
\[+ \sum_{\ell=1}^{s} R_{M_{\ell}}^N(t), \]

\[E_2. \quad (f(t))^{\otimes k} = \sum_{n_1=0}^{M_1} \sum_{n_2=0}^{M_2} \cdots \sum_{n_s=0}^{M_s} E_{n_1}(\tau) E_{n_2}(\tau) \cdots E_{n_s}(\tau) f_{\otimes (k+l(n_1,\ldots,n_s))} + \]
\[+ \sum_{\ell=1}^{s} R_{M_{\ell}}(t) \]

where, for any \(\ell = 1, \ldots, s \), there exist \(c_{\ell}, c'_{\ell} > 0 \) s. t.

\[||R_{M_{\ell}}^N(t)||_{\delta,k} \leq (c_{\ell})^k (\lambda_{\alpha})^{\frac{M_{\ell}}{\ell}}, \quad ||R_{M_{\ell}}(t)||_{\infty} \leq (c'_{\ell})^k (\lambda_{\alpha})^{\frac{M_{\ell}}{\ell}} \]

\[\blacksquare \lambda_{\alpha} < 1 \]

\[\blacksquare \text{the bound on the remainders are UNIFORM in } N \text{ and } \delta \]

\[\blacksquare E_{n_1}(\tau) E_{n_2}(\tau) \cdots E_{n_s}(\tau) f_{k+l(n_1,\ldots,n_s)}^N(0) \rightarrow E_{n_1}(\tau) E_{n_2}(\tau) \cdots E_{n_s}(\tau) f_{\otimes (k+l(n_1,\ldots,n_s))} \]

pointwise as \(N \rightarrow \infty, \delta \rightarrow 0, N\delta^3 = \alpha \) AND both strings are unif. bounded (see Thm 1)

\[\downarrow \]

\[\lim_{N \rightarrow +\infty, \delta \rightarrow 0} \left| f_k^N(t) - (f(t))^{\otimes k} \right|_{L^1(\Lambda_k)} = 0, \quad \forall \text{ compact sets } \Lambda_k \subset \mathbb{R}^{3k} \]
An example of factorizing Initial Data (IDEA)

Consider the N-particle symmetric probability measure:

$$W_N(V_N) = \frac{1}{N!} \prod_{i=1}^{N} \phi(i)(v_i) \hookrightarrow (17)$$

where P_N is the group of permutations on \{1\hookrightarrow...\hookrightarrow N\} and $1\hookrightarrow...\hookrightarrow N$ is a fixed sequence of different cells of volume 3.

We have:

$$I_{supp W_N} \subseteq A_N$$

If $N_k(V_k) = \frac{1}{N_1}(...\prod_{i=1}^{k+1} P_{i_1...i_k}$:

$$N_r \neq i_s \Rightarrow i_1(v_1)\cdots i_k(v_k) \rightarrow^{3k, \text{ for any}} k \geq 1$$

In particular,

$$f_{N_1}(v) = \frac{1}{N} \sum_{i=1}^{N} \phi(i)(v) \rightarrow^{\text{empirical measure}} (18)$$

Choose the sequence of cells $1\hookrightarrow...\hookrightarrow N$ in such a way that, for any $k \in C_0 \mathbb{R}_3$,

$$Z dv f_{N_1}(v) \rightarrow Z dv f_{in}(v) \hookrightarrow$$

as $N \rightarrow 0 \rightarrow N$,

where $f_{in}(v) \in C_0 \mathbb{R}_3$, $supp f_{in} = A$ with $|A| > N_3 = \phi > 0$ and $||f_{in}||_1 < 1$.

Then, for any k, f_{N_k} is WEAKLY converging to $f_{\infty k}$.

Good BUT too weak convergence....
Consider the N-particle symmetric probability measure:

$$W_N(V_N) = \frac{1}{N!} \sum_{\pi \in \mathcal{P}_N} \frac{1}{\delta^{3N}} \prod_{i=1}^{N} \chi_{\Delta_{\pi(i)}}(v_i),$$

(17)

where \mathcal{P}_N is the group of permutations on $\{1, \ldots, N\}$ and $\Delta_1 \ldots \Delta_N$ is a fixed sequence of different cells of volume δ^3.
Consider the N-particle symmetric probability measure:

$$
W_N(V_N) = \frac{1}{N!} \sum_{\pi \in \mathcal{P}_N} \frac{1}{\delta^{3N}} \prod_{i=1}^{N} \chi_{\Delta_{\pi(i)}}(v_i),
$$

(17)

where \mathcal{P}_N is the group of permutations on $\{1, \ldots, N\}$ and $\Delta_1 \ldots \Delta_N$ is a fixed sequence of different cells of volume δ^3. We have:

- $\text{supp } W_N \subseteq A^N_\delta$

- $f_k^N(V_k) = \frac{1}{N(N-1)\ldots(N-k+1)} \sum_{i_1 \ldots i_k: \ i_r \neq i_s} \frac{\chi_{\Delta_{i_1}}(v_1)\ldots\chi_{\Delta_{i_k}}(v_k)}{\delta^{3k}}, \text{ for any } k \geq 1$

In particular,

$$
f_1^N(v) = \frac{1}{N} \sum_{i=1}^{N} \frac{\chi_{\Delta_i}(v)}{\delta^3} \sim \text{empirical measure}
$$

(18)
Consider the \(N \)-particle symmetric probability measure:

\[
W_N(V_N) = \frac{1}{N!} \sum_{\pi \in \mathcal{P}_N} \frac{1}{\delta^{3N}} \prod_{i=1}^{N} \chi_{\Delta_{\pi(i)}}(v_i),
\]

where \(\mathcal{P}_N \) is the group of permutations on \(\{1, \ldots, N\} \) and \(\Delta_1 \ldots \Delta_N \) is a fixed sequence of different cells of volume \(\delta^3 \). We have:

\[
\bullet \quad \text{supp } W_N \subseteq A_\delta^N
\]

\[
\bullet \quad f_k^N(V_k) = \frac{1}{N(N-1)\ldots(N-k+1)} \sum_{i_1 \ldots i_k: \text{ } i_r \neq i_s} \frac{\chi_{\Delta_{i_1}}(v_1) \ldots \chi_{\Delta_{i_k}}(v_k)}{\delta^{3k}}, \quad \text{for any } k \geq 1
\]

In particular,

\[
f_1^N(v) = \frac{1}{N} \sum_{i=1}^{N} \frac{\chi_{\Delta_i}(v)}{\delta^3} \sim \text{empirical measure}
\]

Chose the sequence of cells \(\Delta_1 \ldots \Delta_N \) in such a way that, for any \(\varphi \in C_b^0(\mathbb{R}^3) \),

\[
\int dv \ f_1^N(v) \varphi(v) \to \int dv \ f_{in}(v) \varphi(v), \quad \text{as } N \to \infty, \delta \to 0, N\delta^3 = \alpha > 0,
\]

where \(f_{in}(v) \in C_c^0(\mathbb{R}^{3k}) \), \(\text{supp } f_{in} = A \) with \(|A| > N\delta^3 = \alpha \) and \(\|f_{in}\|_\infty < \frac{1}{\alpha} \).
An example of factorizing Initial Data (IDEA)

Consider the N-particle symmetric probability measure:

$$W_N(V_N) = \frac{1}{N!} \sum_{\pi \in \mathcal{P}_N} \frac{1}{\delta^{3N}} \prod_{i=1}^{N} \chi_{\Delta_{\pi(i)}}(v_i),$$ \hspace{1cm} (17)

where \mathcal{P}_N is the group of permutations on $\{1, \ldots, N\}$ and $\Delta_1 \ldots \Delta_N$ is a fixed sequence of different cells of volume δ^3. We have:

- $\text{supp } W_N \subseteq A_\delta^N$

- $f_k^N(V_k) = \frac{1}{N(N-1)\ldots(N-k+1)} \sum_{i_1 \ldots i_k: \text{for any } k \geq 1} \frac{\chi_{\Delta_{i_1}}(v_1) \ldots \chi_{\Delta_{i_k}}(v_k)}{\delta^{3k}}$

In particular,

$$f_1^N(v) = \frac{1}{N} \sum_{i=1}^{N} \frac{\chi_{\Delta_i}(v)}{\delta^3} \sim \text{empirical measure}$$ \hspace{1cm} (18)

Chose the sequence of cells $\Delta_1 \ldots \Delta_N$ in such a way that, for any $\varphi \in C_0^0(\mathbb{R}^3)$,

$$\int dv \; f_1^N(v) \varphi(v) \to \int dv \; f_{\text{in}}(v) \varphi(v), \quad \text{as} \quad N \to \infty, \delta \to 0, N\delta^3 = \alpha > 0,$$ \hspace{1cm} (19)

where $f_{\text{in}}(v) \in C_0^0(\mathbb{R}^{3k})$, supp $f_{\text{in}} = A$ and $|A| > N\delta^3 = \alpha$ and $\|f_{\text{in}}\|_\infty < \frac{1}{\alpha}$. Then, for any k, f_k^N is WEAKLY converging to f_{in}^k. Good BUT too weak convergence....
An example of factorizing Initial Data (IDEA)
An example of factorizing Initial Data (IDEA)

Uniform Distribution on (suitable) cells is a good idea but local smoothing is needed!

Trick: Introduce an intermediate scale $O(p)$ on which correlations vanish in the limit since they live on the smaller scale $O(p')$.

"New" partition of R^3 made by cells e of side p ($\ll \text{volume } 3^2$). Each "large" cell e contains a lot of "small" cells of volume 3^2.

We consider a symmetric N-particle distribution "saying that" particles are uniformly distributed on each "larger" cell e with the addition of the exclusion constraint on the smaller cells (contained in e).

Particles whose velocities belong to different cells e are independent.

For any k_1 and $v_1 \hookrightarrow \ldots \hookrightarrow v_k$, the resource exists $N_0 > 1$ ($0 << 1$) such that, for $N > N_0$ (< 0):

$v_1 \hookrightarrow \ldots \hookrightarrow v_k$ with $e_i \neq e_{i'}$.

$f_N(v_1) \mapsto X_i (N \hookrightarrow f_{\text{in}})$ $e_i (v_1)$ uniformly "adjusting" $i (N \hookrightarrow f_{\text{in}})$.
An example of factorizing Initial Data (IDEA)

UNIFORM DISTRIBUTION on (suitable) cells is a good idea **BUT** LOCAL SMOOTHING is needed!

TRICK: Introduce an intermediate scale $O(\sqrt{\delta})$ on which correlations vanish in the limit (since they live on the smaller scale $O(\delta)$).

"New" partition of \mathbb{R}^3 made by cells $\tilde{\Delta}$ of side $\sqrt{\delta}$ (\sim volume $\delta^{3/2}$). Each "large" cell $\tilde{\Delta}$ contains A LOT of "small" cells Δ of volume δ^3.
An example of factorizing Initial Data (IDEA)

UNIFORM DISTRIBUTION on (suitable) cells is a good idea BUT LOCAL SMOOTHING is needed!

TRICK: Introduce an intermediate scale \(O(\sqrt{\delta}) \) on which correlations vanish in the limit \((since \ they \ live \ on \ the \ smaller \ scale \ O(\delta)) \)

"New" partition of \(\mathbb{R}^3 \) made by cells \(\widetilde{\Delta} \) of side \(\sqrt{\delta} \) \((\sim \) volume \(\delta^{3/2} \)). Each ”large” cell \(\widetilde{\Delta} \) contains A LOT of ”small” cells \(\Delta \) of volume \(\delta^3 \).

We consider a symmetric \(N \)-particle distribution ”saying that” particles are uniformly distributed on each ”larger” cell \(\widetilde{\Delta} \) with the addition of the exclusion constraint on the smaller cells \(\Delta \) (contained in \(\widetilde{\Delta} \)).
An example of factorizing Initial Data (IDEA)

→ **UNIFORM DISTRIBUTION** on (suitable) cells is a good idea **BUT**
 LOCAL SMOOTHING is needed!

TRICK: Introduce an intermediate scale $O(\sqrt{\delta})$ on which
correlations vanish in the limit (since they live on the smaller scale $O(\delta)$)

→ "New" partition of \mathbb{R}^3 made by cells $\tilde{\Delta}$ of side $\sqrt{\delta}$ (\sim volume $\delta^{3/2}$). Each "large" cell $\tilde{\Delta}$ contains A LOT of "small" cells Δ of volume δ^3.

→ We consider a symmetric N-particle distribution "saying that" particles are
 uniformly distributed on each "larger" cell $\tilde{\Delta}$ with the addition of the exclusion
 constraint on the smaller cells Δ (contained in $\tilde{\Delta}$).

→ Particles whose velocities belong to **DIFFERENT CELLS $\tilde{\Delta}$** are **INDEPENDENT**
An example of factorizing Initial Data (IDEA)

UNIFORM DISTRIBUTION on (suitable) cells is a good idea BUT LOCAL SMOOTHING is needed!

TRICK: Introduce an intermediate scale $O(\sqrt{\delta})$ on which correlations vanish in the limit (since they live on the smaller scale $O(\delta)$)

"New" partition of \mathbb{R}^3 made by cells $\tilde{\Delta}$ of side $\sqrt{\delta}$ (\sim volume $\delta^{3/2}$). Each "large" cell $\tilde{\Delta}$ contains A LOT of "small" cells Δ of volume δ^3.

We consider a symmetric N-particle distribution "saying that" particles are uniformly distributed on each "larger" cell $\tilde{\Delta}$ with the addition of the exclusion constraint on the smaller cells Δ (contained in $\tilde{\Delta}$).

Particles whose velocities belong to DIFFERENT CELLS $\tilde{\Delta}$ are INDEPENDENT

For any $k \geq 1$ and $v_1, \ldots, v_k \in \mathcal{A}^k$, there surely exists $N_0 >> 1$ ($\delta_0 << 1$) such that, for $N > N_0$ ($\delta < \delta_0$): $v_1 \in \Delta_{i_1}, \ldots, v_k \in \Delta_{i_k}$ with $\Delta_{i_\ell} \neq \Delta_{i_m}$.
An example of factorizing Initial Data (IDEA)

UNIFORM DISTRIBUTION on (suitable) cells is a good idea BUT LOCAL SMOOTHING is needed!

TRICK: Introduce an intermediate scale $O(\sqrt{\delta})$ on which correlations vanish in the limit (since they live on the smaller scale $O(\delta)$).

"New" partition of \mathbb{R}^3 made by cells $\tilde{\Delta}$ of side $\sqrt{\delta}$ (\sim volume $\delta^{3/2}$). Each "large" cell $\tilde{\Delta}$ contains A LOT of "small" cells Δ of volume δ^3.

We consider a symmetric N-particle distribution "saying that" particles are uniformly distributed on each "larger" cell $\tilde{\Delta}$ with the addition of the exclusion constraint on the smaller cells Δ (contained in $\tilde{\Delta}$).

Particles whose velocities belong to DIFFERENT CELLS $\tilde{\Delta}$ are INDEPENDENT.

For any $k \geq 1$ and $v_1, \ldots, v_k \in \mathcal{A}^k$, there surely exists $N_0 >> 1$ ($\delta_0 << 1$) such that, for $N > N_0$ ($\delta < \delta_0$): $v_1 \in \tilde{\Delta}_{i_1}, \ldots, v_k \in \tilde{\Delta}_{i_k}$ with $\tilde{\Delta}_{i_\ell} \neq \tilde{\Delta}_{i_m}$.

\[f^N_1(v_1) \approx \sum_i \gamma_i(N, f_{in}) \chi_{\tilde{\Delta}_i}(v_1) \rightarrow f_{in}(v_1) \text{ uniformly } \sim \text{ "adjusting" } \gamma_i(N, f_{in})! \]
Comments and Perspectives

• Actually, we can prove a more general result, recovering "statistical solutions" of the U-U eqn (Hewitt-Savage Theorem + Statistical Mechanics Tools to deal with non-factorized initial data.....)

• What about BOSONS (and Bose-Einstein Condensation)??

• Numerical Simulations ?
• Actually, we can prove a more general result, recovering "statistical solutions" of the U-U eqn (Hewitt-Savage Theorem + Statistical Mechanics Tools to deal with non-factorized initial data.....)

• What about BOSONS (and Bose-Einstein Condensation)??

• Numerical Simulations?
Thank you for your attention!