Finite Difference Methods for Fully Nonlinear Second Order PDEs

Xiaobing Feng

The University of Tennessee, Knoxville, U.S.A.

Crete, September 22, 2011

Collaborators:
Tom Lewis, University of Tennessee
Chiu-Yen Kao, Ohio State University
Michael Neilan, University of Pittsburgh

Supported in part by NSF
Outline

Introduction and Background

A Finite Difference Framework: 1-D Case

High Dimension and High Order Extensions

Conclusion
Outline

Introduction and Background

A Finite Difference Framework: 1-D Case

High Dimension and High Order Extensions

Conclusion
Terminologies:

- **Semilinear PDEs**: Nonlinear in unknown functions but linear in all their derivatives. e.g.
 \[-\Delta u = e^u, \quad u_t - \Delta u + (u^2 - 1)u = 0\]

- **Quasilinear PDEs**: Nonlinear in lower order derivatives of unknown functions but linear in highest order derivatives. e.g.
 \[-\text{div} (|\nabla u|^{p-2}\nabla u) = f, \quad u_t - \text{div} \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + 1}} \right) = 0\]

- **Fully nonlinear PDEs**: Nonlinear in highest order derivatives of unknown functions
First order fully nonlinear PDEs

\[F(Du, u, x) = 0 \]

Examples:

- Eikonal equation: \(|Du| = f \)
- Hamilton-Jacobi equations: \(u_t + H(Du, u, x, t) = 0 \)
First order fully nonlinear PDEs

\[F(Du, u, x) = 0 \]

Examples:
- Eikonal equation: \(|Du| = f \)
- Hamilton-Jacobi equations: \(u_t + H(Du, u, x, t) = 0 \)

Second order fully nonlinear PDEs

\[F(D^2 u, Du, u, x) = 0 \]

Examples:
- Monge-Ampère equation: \(\det(D^2 u) = f \)
- HJ-Bellman equation: \(\inf_{\nu \in \mathcal{V}} (L_{\nu} u - f_{\nu}) = 0 \)
Fully nonlinear PDEs arise in

- Differential Geometry
- Mass Transportation
- Optimal Control
- Semigeostrophic Flow
- Meteorology
- Antenna Design
- Image Processing and Computer Vision
- Gas Dynamics
- Astrophysics
- Grid generation
Example 1: (Minkowski Problem) Let $K > 0$ be a constant, find $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ such that the Gauss curvature of the graph of u is equal to K at every point x in Ω

$\Omega = [-0.57, 0.57]^2$; \hspace{1em} BC: $u = x^2 + y^2 - 1$; \hspace{1em} $K = 0.1, 1, 2, 2.1$
Example 1: (Minkowski Problem) Let $K > 0$ be a constant, find $u : \Omega \subset \mathbb{R}^n \rightarrow \mathbb{R}$ such that the Gauss curvature of the graph of u is equal to K at every point x in Ω

\[\Omega = [-0.57, 0.57]^2; \quad \text{BC: } u = x^2 + y^2 - 1; \quad K = 0.1, 1, 2, 2.1 \]

In the PDE language, the problem is described by

\[
\frac{\det(D^2 u)}{(1 + |Du|^2)^{\frac{n+2}{2}}} = K \quad \text{or} \quad \det(D^2 u) = K(1 + |Du|^2)^{\frac{n+2}{2}}
\]
Example 2: (Monge-Kantorovich Optimal Transport Problem)
Let \(\rho^+, \rho^- \) be two nonnegative (density) functions on \(\mathbb{R}^n \) with equal mass. Let \(\mathcal{A} \) denote the set of all mass preserving maps with respect to \(\rho^+ \) and \(\rho^- \), that is, \(\Phi : \mathbb{R}^n \to \mathbb{R}^n \) satisfies

\[
\rho^+(x) = \det(\nabla \Phi(x))\rho^-(\Phi(x)) \quad \forall x \in \text{supp}(\rho^+). \tag{MPc}
\]

Given \(c : \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty) \) (cost density function), the MK Optimal Transport Problem seeks \(\Psi \in \mathcal{A} \) such that

\[
I(\Psi) = \inf_{\Phi \in \mathcal{A}} I(\Phi) := \int_{\mathbb{R}^d} c(x, \Phi(x))\rho^+(x)dx
\]
Example 2: (Monge-Kantorovich Optimal Transport Problem)
Let ρ^+, ρ^- be two nonnegative (density) functions on \mathbb{R}^n with equal mass. Let \mathcal{A} denote the set of all mass preserving maps with respect to ρ^+ and ρ^-, that is, $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ satisfies

$$\rho^+(x) = \det(\nabla \Phi(x))\rho^-(\Phi(x)) \quad \forall x \in \text{supp}(\rho^+). \quad \text{(MPc)}$$

Given $c : \mathbb{R}^n \times \mathbb{R}^n \rightarrow [0, \infty)$ (cost density function), the MK Optimal Transport Problem seeks $\Psi \in \mathcal{A}$ such that

$$I(\Psi) = \inf_{\Phi \in \mathcal{A}} I(\Phi) := \int_{\mathbb{R}^n} c(x, \Phi(x))\rho^+(x)dx$$

If $\Psi = \nabla u$ (i.e., u is a potential of Ψ), then (MPc) implies

$$\rho^+(x) = \det(D^2 u(x))\rho^-(\nabla u(x)) \quad \forall x \in \text{supp}(\rho^+)$$
Example 3: (Stochastic Optimal Control) Suppose a stochastic process $x(\tau)$ is governed by the stochastic differential equation

$$d x(\tau) = f (\tau, x(\tau), u(\tau)) + \sigma (\tau, x(\tau), u(\tau)) \, dW(\tau), \quad \tau \in (t, T]$$

$$x(t) = x \in \Omega \subset \mathbb{R}^n,$$

W: Wiener process \quad u: control vector

and let

$$J(t, x, u) = E_t x \left[\int_t^T L (\tau, x(\tau), u(\tau)) \, d\tau + g (x(T)) \right].$$

Stochastic optimal control problem involves minimizing $J(t, x, u)$ over all $u \in U$ for each $(t, x) \in (0, T] \times \Omega.$
Bellman Principle

Suppose $u^* \in U$ such that

$$u^* \in \arg\min_{u \in U} J(t, x, u),$$

and define the value function

$$v(t, x) = J(t, x, u^*).$$

Then, v is the minimal cost achieved starting from the initial value $x(t) = x$, and u^* is the optimal control that attains the minimum.
Bellman Principle (Continued)

Let $\Omega \subset \mathbb{R}^n$, $T > 0$, and $U \subset \mathbb{R}^m$. The Bellman Principle says v is the solution of

$$v_t = F(D^2 v, \nabla v, v, x, t) \quad \text{in} \ (0, T] \times \Omega,$$

for

$$F(D^2 v, \nabla v, v, x, t) = \inf_{u \in U} (L_u v - h^u),$$

$$L_u v = \sum_{i=1}^{n} \sum_{j=1}^{n} a^u_{i,j}(t, x)v_{x_i x_j} + \sum_{i=1}^{n} b^u_i(t, x)v_{x_i} + c^u(t, x)v$$

with

$$A^u := \frac{1}{2} \sigma \sigma^T \quad \quad b^u := f(t, x, u)$$

$$c^u := 0 \quad \quad h^u := L(t, x, u)$$
Bellman Principle (Continued)

After \(v \) is found, to find the control \(u^* \) and the corresponding stochastic process \(x \),

- Solve \(u^* = \arg\min_{u \in U} [L_u v - f_u] \)
- Plug \(u^* \) into the SDE and solve for \(x \)

Thus, solving the Stochastic Optimal Control Problem can be recast as solving a fully nonlinear 2nd order (parabolic) Bellman equation
Definition: $F[u] := F(D^2u, \nabla u, u, x)$ is said to be **elliptic** if

$$F(A, p, r, x) \leq F(B, p, r, x) \quad \forall A, B \in \text{SL}(n), \ A - B > 0$$

Remark:
When $F(A, p, r, x)$ is differentiable in A, then F is elliptic at \hat{u} if

$$\frac{\partial F[\hat{u}]}{\partial A} > 0,$$

OR if the linearization of F at \hat{u} is elliptic as a linear operator.
(1) Classical solution theory (before 1985): [Chapter 17, Gilbarg & Trudinger], [Chapter 16, Lieberman]

(2) Viscosity solution theory (after 1985). Solution concept was due to Crandall and Lions (1983). Two breakthroughs:
 ▶ R. Jensen (1986): Uniqueness by maximum principle
 ▶ H. Ishii (1987): Existence by Perron’s method

(3) A complete regularity theory was established in ’80s and ’90s, some key milestones are
 ▶ Krylov-Safonov C^α estimates for linear elliptic PDEs of non-divergence form (’79) (which replaces De Giorgi-Nash C^α estimates for linear elliptic PDEs of divergence form)
 ▶ Evans-Krylov $C^{2,\alpha}$ estimates (’82)
 ▶ Caraffelli’s $W^{2,p}$ estimates for the Monge-Ampère equation and general elliptic PDEs
Definitions: Assume F is elliptic in a function class $\mathcal{A} \subset B(\overline{\Omega})$ (set of bounded functions),

(i) $u \in \mathcal{A}$ is called a **viscosity subsolution** of $F[u] = 0$ if $
\forall \varphi \in C^2$, when $u^* - \varphi$ has a local maximum at x_0 then

$$F^*(D^2\varphi(x_0), D\varphi(x_0), u^*(x_0), x_0) \leq 0$$

(ii) $u \in \mathcal{A}$ is called a **viscosity supersolution** of $F[u] = 0$ if $
\forall \varphi \in C^2$, when $u_* - \varphi$ has a local minimum at x_0 then

$$F^*(D^2\varphi(x_0), D\varphi(x_0), u_*(x_0), x_0) \geq 0$$

(iii) $u \in \mathcal{A}$ is called a **viscosity solution** of $F[u] = 0$ if u is both a sub- and supersolution of $F[u] = 0$

where $u^*(x) := \lim \sup_{x' \to x} u(x')$ and $u_*(x) := \lim \inf_{x' \to x} u(x')$ are the upper and lower semi-continuous envelopes of u
Geometrically,

\[u(x_0) = \varphi(x_0) \]

\[F(D^2\varphi(x_0), \nabla \varphi(x_0), \varphi(x_0), x_0) \leq 0 \]

\[F(D^2\varphi(x_0), \nabla \varphi(x_0), \varphi(x_0), x_0) \geq 0 \]

Figure: A geometric interpretation of viscosity solutions
Geometrically,

\[
\varphi
\]

\[
u(x_0) = \varphi(x_0)
\]

\[
F(D^2\varphi(x_0), \nabla \varphi(x_0), \varphi(x_0), x_0) \leq 0
\]

\[
u(x_0) = \varphi(x_0)
\]

\[
F(D^2\varphi(x_0), \nabla \varphi(x_0), \varphi(x_0), x_0) \geq 0
\]

Figure: A geometric interpretation of viscosity solutions

Remark: The concept of viscosity solution is non-variational. It is based on a “differentiation by parts” approach, instead of the usual integration by parts approach used to define weak solutions for linear, semilinear, and quasilinear PDEs.
$64K$ Question:

How to compute viscosity solutions?
Available Numerical Methodologies

- **Finite Difference Methods** based on directly approximating derivatives by difference quotients

- **Galerkin-type Methods** based on variational principles and approximating infinite dimension spaces by finite dimension spaces (finite element, finite volume, spectral Galerkin, discontinuous Galerkin)

- **Everything else** such as *Collocation Method, Meshless Method, Lattice Boltzmann method, radial basis function methods, etc.*
Numerical Challenges

In contrast with the success of PDE analysis, little progress on developing numerical methods was made until very recently

- None of above methods work (directly) for general fully nonlinear 2nd order PDEs
- Situation is even worse for Galerkin-type methods because there is no variational principle to start with! Recall that the concept of viscosity solutions is non-variational!!
- Conditional uniqueness is hard to deal with numerically
- Tons of other numerical issues such convergence, efficiency, fast solvers, implementations, etc.
Numerical Challenges

In contrast with the success of PDE analysis, little progress on developing numerical methods was made until very recently

- None of above methods work (directly) for general fully nonlinear 2nd order PDEs
- Situation is even worse for Galerkin-type methods because there is no variational principle to start with! Recall that the concept of viscosity solutions is non-variational!!
- Conditional uniqueness is hard to deal with numerically
- Tons of other numerical issues such convergence, efficiency, fast solvers, implementations, etc.

Remark: On the other hand, to certain degree, all above methods work for linear, semilinear, and quasilinear PDEs. At least they can be formulated without too much difficulties
Consider Monge-Ampère problem

\[
det(D^2u) = f \quad \text{in } \Omega = (0, 1)^2
\]

\[
u = g \quad \text{on } \partial \Omega
\]

\(f\) and \(g\) are chosen such that \(u = e^{(x_1^2 + x_2^2)/2} \in C^\infty(\Omega)\) is the exact solution. We discretize the Monge-Ampère equation using the standard nine-point finite difference method

\[
(D_{xx}^2 u_{ij}) (D_{yy}^2 u_{ij}) - (D_{xy}^2 u_{ij}) = f_{i,j},
\]
Figure: 16 computed solutions of the Monge-Ampère equation using a nine-point stencil on a 4×4 grid. $2^{(N-2)^2}$ solutions on an $N \times N$ grid.
Nevertheless, there are some recent attempts for constructing Galerkin-type methods for Monge-Ampère type equations.

- Dean and Glowinski ('03-'06) proposed some least squares and augmented Lagrange methods for Monge-Ampère type equations.
- Böhmer ('08) proposed and analyzed an L^2 projection method using C^1 finite elements.
- Brenner-Gudi-Neilan-Sung ('09-'10) constructed and analyzed some C^0 discontinuous Galerkin L^2-projection methods for Monge-Ampère type equations.
- F.-Neilan ('06-'10) has developed an indirect approach based on combining the newly developed vanishing moment method (VMM) and Galerkin type methods.
- F.-Lewis ('10-'11) extended the vanishing moment method (VMM) to Hamilton-Jacobi-Bellman type equations.
Outline

Introduction and Background

A Finite Difference Framework: 1-D Case

High Dimension and High Order Extensions

Conclusion
Goals:

- To construct some (2nd order) finite difference methods (FDMs) which guarantee to converge to viscosity solutions of the underlying fully nonlinear 2nd order PDE problems

Remark:
To simplify the presentation, I shall describe the ideas and methods using 1-D equations. High dimension (and high order) generalizations will be given at the end.
Goals:

- To construct some (2nd order) finite difference methods (FDMs) which guarantee to converge to viscosity solutions of the underlying fully nonlinear 2nd order PDE problems

- To develop a blueprint/receipt for designing FDMs and a new FD convergence framework/theory which is simpler than Barles-Souganidis’ (’91) framework and more suitable for FDMs and local discontinuous Galerkin (LDG) methods

Remark:
To simplify the presentation, I shall describe the ideas and methods using 1-D equations. High dimension (and high order) generalizations will be given at the end
Notation:

Let $\Omega = [a, b]$ and $\Omega_h := \{x_j\}_{j=1}^J$ be a (uniform) mesh on Ω with mesh size $h = h_x$. Define the forward and backward difference operators by

$$\delta^+_x v(x) := \frac{v(x + h) - v(x)}{h}, \quad \delta^-_x v(x) := \frac{v(x) - v(x - h)}{h}$$

for a continuous function v defined in Ω and

$$\delta^+_x V_j := \frac{V_{j+1} - V_j}{h}, \quad \delta^-_x V_j := \frac{V_j - V_{j-1}}{h},$$

for a grid function V on Ω_h

Remark:

δ^+_x and δ^-_x will be our building blocks in the sense that we shall approximate 1st and 2nd order derivatives using combinations and compositions of them
Existing Finite Difference Methods

- Barles-Souganidis (’91) proposed an abstract framework for approximating $F[u] = 0$ by $S[u^\rho] := S(u^\rho, x, \rho) = 0$ (FD or otherwise). They proved that u^ρ converges to u locally uniformly if S is monotone, stable, and consistent. An $O(h^\alpha)$ convergence rate in C^0-norm was established recently by Caffarelli-Souganidis (’08).

- Oberman (’08) constructed a wide-stencil FD scheme for the Monge-Ampére equation which is the only FD scheme known to satisfy Barles-Souganidis’ criterion so far.
Existing Finite Difference Methods

- Barles-Souganidis (’91) proposed an abstract framework for approximating $F[u] = 0$ by $S[u^\rho] := S(u^\rho, x, \rho) = 0$ (FD or otherwise). They proved that u^ρ converges to u locally uniformly if S is monotone, stable, and consistent. An $O(h^\alpha)$ convergence rate in C^0-norm was established recently by Caffarelli-Souganidis (’08).

- Oberman (’08) constructed a wide-stencil FD scheme for the Monge-Ampére equation which is the only FD scheme known to satisfy Barles-Souganidis’ criterion so far.

- Krylov (’02-05) proposed several monotone FD schemes for Bellman type equations $F[u] = 0$.

- Kao-Trudinger (’90–’93) developed several monotone/positive finite difference methods for $F[u] = 0$.
Barles-Souganidis (’91) proposed an abstract framework for approximating $F[u] = 0$ by $S[u^\rho] := S(u^\rho, x, \rho) = 0$ (FD or otherwise). They proved that u^ρ converges to u locally uniformly if S is monotone, stable, and consistent.

Remark:

- Barles-Souganidis’ framework does not tell how to construct a convergent scheme, no hints are given either.
- Their monotonicity and consistency are difficult to verify for a given scheme.
- We feel that imposing monotonicity on $S[u^\rho]$ (as a function of u^ρ) is too restrictive because differential operator $F[u]$ does not have that property.
Ideas used for 1st order Hamilton-Jacobi equations

Consider fully nonlinear 1st order HJ equation

\[H(u_x, x) = 0 \]

A general FD scheme on the mesh \(\mathcal{T}_h := \{x_j\}_{j=1}^J \) has the form

\[\hat{H}(\delta^- U_j, \delta^+ U_j, x_j) = 0 \]

\(\hat{H} \) is called a numerical Hamiltonian

Consistency: \(\hat{H}(p, p, x_j) = H(p, x_j) \)

Monotonicity: \(\hat{H}(\uparrow, \downarrow, x_j) \)

Remark/Observation:
- \(\hat{H} \) is a function of both \(\delta^- U_j \) and \(\delta^+ U_j \). This is crucial because \(u_x \) may be discontinuous at \(x_j \).
- Both **monotonicity and consistency** are not hard to verify in practice. The uniform convergence for such schemes was proved by Crandall-Lions ('84)
Finite difference approximations of u_{xx} in $F(u_{xx}, x) = 0$

- Since u_{xx} may be discontinuous at x_j, it should be approximated from both sides of x_j
Finite difference approximations of u_{xx} in $F(u_{xx}, x) = 0$

- Since u_{xx} may be discontinuous at x_j, it should be approximated from both sides of x_j
- There are 3 possible FD approximations of $u_{xx}(x_j)$:

 $\delta_x^- \delta_x^- u(x_j), \quad \delta_x^+ \delta_x^- u(x_j), \quad \delta_x^+ \delta_x^+ u(x_j)$

- It is trivial to check

 $\delta_x^- \delta_x^- u(x) = \delta_x^2 u(x_j - h) = \delta_x^2 u(x_{j-1})$

 $\delta_x^+ \delta_x^- u(x) = \delta_x^2 u(x_j)$

 $\delta_x^+ \delta_x^+ u(x) = \delta_x^2 u(x_j + h) = \delta_x^2 u(x_{j+1})$

 where

 $\delta_x^2 u(x_j) := \frac{u(x_j - h) - 2u(x_j) + u(x_j + h)}{h^2} = \frac{u(x_{j-1}) - 2u(x_j) + u(x_{j+1})}{h^2}$
A general finite difference framework for $F[u] = 0$

Inspired by the above observations, we propose the following form of FD methods for $F[u] = 0$:

$$F_h[U, x_j] := \hat{F}(\delta_x^2 U_{j-1}, \delta_x^2 U_j, \delta_x^2 U_{j+1}, x_j) = 0$$

Definition: \hat{F} is called a numerical operator

Questions:

- What is \hat{F}?
- Is there a guideline for constructing \hat{F}? (Recall that such a guideline is missing in Barles-Souganidis’ framework)
Criterions for “good” numerical operator \hat{F}

- **Consistency**: $\hat{F}(p, p, p, x_j) = F(p, x_j)$
- **Monotonicity**: $\hat{F}(\uparrow, \downarrow, \uparrow, x_j)$
- **Solvability and Stability**: $\exists h_0 > 0$ and $C_0 > 0$, which is independent of h, such that $F_h[U, x_j] = 0$ has a (unique) solution U and $\|U\|_{\ell^\infty(T_h)} < C_0$ for $h < h_0$
Criterions for “good” numerical operator \hat{F}

- **Consistency:** $\hat{F}(p, p, p, x_j) = F(p, x_j)$
- **Monotonicity:** $\hat{F}(\uparrow, \downarrow, \uparrow, x_j)$
- **Solvability and Stability:** $\exists h_0 > 0$ and $C_0 > 0$, which is independent h, such that $F_h[U, x_j] = 0$ has a (unique) solution U and $\|U\|_{\ell^\infty(T_h)} < C_0$ for $h < h_0$

Remark:

- If F is *not* continuous, \hat{F} may not be continuous either. In this case the consistency definition should be changed to

\[
\lim_{p_k \to p, k=1,2,3} \liminf_{\xi \to x} \hat{F}(p_1, p_2, p_3, \xi) \geq F_*(p, x) \quad \text{and} \quad \limsup_{p_k \to p, k=1,2,3} \lim_{\xi \to x} \hat{F}(p_1, p_2, p_3, x) \leq F^*(p, x)
\]

- Above consistency and monotonicity are different from Barles-Souganidis’ definitions, but the solvability and stability are same
For consistent, monotone and stable FD schemes, we have the following theorem, which may be regarded as an analogue of Crandall-Lions’ convergence theorem for fully nonlinear 1st order equations.

Theorem (F., Kao, Lewis, ’11)

Let u_h denote the piecewise constant extension of U on $\{[x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}]\}$. Suppose the numerical operator \hat{F} is consistent, monotone and stable, then u_h converges to the unique viscosity solution of the Dirichlet problem for $F(u_{xx}, x) = 0$.

Idea of Proof: Follow the PDE analysis and modify Barles-Souganidis’ proof.
Guidelines for constructing \hat{F}

Once again, we look for hints/ideas from FD methods for fully nonlinear 1st order Hamilton-Jacobi equations (and hyperbolic conservation laws)!

Theorem (E. Tadmor (’97))

Every “convergent” monotone finite difference scheme for HJ equations (and hyperbolic conservation laws) must contain a numerical diffusion (or viscosity) term.
Once again, we look for hints/ideas from FD methods for fully nonlinear 1st order Hamilton-Jacobi equations (and hyperbolic conservation laws)!

Theorem (E. Tadmor (’97))

*Every “convergent” monotone finite difference scheme for HJ equations (and hyperbolic conservation laws) must contain a numerical diffusion (or viscosity) term.***

In other words, every “convergent” monotone finite difference scheme for HJ equations implicitly approximates the differential equation

\[-\alpha_h \Delta u + H(\nabla u, x) = 0\]

for sufficiently large and nonlinear \(\alpha > 0\),
Lax-Friedrichs scheme:

\[\hat{H}^{LF}(p_1, p_2) := H\left(\frac{p_1 + p_2}{2}\right) - \alpha^{LF}(p_2 - p_1) \]

Godunov scheme:

\[\hat{H}^G(p_1, p_2) := \text{ext}_{p \in I(p_1, p_2)} H(p) = H^G(p_1, p_2) - \alpha^G(p_2 - p_1) \]

where \(I(p_1, p_2) := [p_1 \wedge p_2, p_1 \vee p_2] \) and

\[\text{ext}_{p \in I(p_1, p_2)} := \begin{cases}
\min_{p \in I(p_1, p_2)} & \text{if } p_1 \leq p_2 \\
\max_{p \in I(p_1, p_2)} & \text{if } p_1 > p_2
\end{cases} \]
Question: What “quantity" plays the role of “numerical diffusion (viscosity) term" as above for fully nonlinear 2rd order PDEs?
Question: What “quantity" plays the role of “numerical diffusion (viscosity) term” as above for fully nonlinear 2rd order PDEs?

Answer/Conjecture: Numerical moment! We conjecture that a “good" scheme for fully nonlinear 2rd order PDEs should contain some kind numerical moment term. In other words, such a “good" scheme implicitly approximates the regularized PDE

$$\alpha h^2 \Delta^2 u + F(D^2 u, \nabla u, u, x) = 0$$

for sufficiently large (and nonlinear) $\alpha > 0$. This is perfectly consistent with the vanishing moment method (at the PDE level) introduced and studied by F. and Neilan ('07-'10):

$$\epsilon \Delta^2 u^\epsilon + F(D^2 u^\epsilon, \nabla u^\epsilon, u^\epsilon, x) = 0$$

with $\epsilon = \alpha h^2$
Examples of “good” numerical operators/schemes

Lax-Friedrichs-like schemes (FKL ’11):

\[
\hat{F}_1(p_1, p_2, p_3) := F\left(\frac{p_1 + p_2 + p_3}{3}\right) + \alpha(p_1 - 2p_2 + p_3)
\]

\[
\hat{F}_2(p_1, p_2, p_3, x_j) := F(p_2) + \alpha(p_1 - 2p_2 + p_3)
\]

\[
\hat{F}_3(p_1, p_2, p_3) := F\left(\frac{p_1 + p_3}{2}\right) + \alpha(p_1 - 2p_2 + p_3)
\]
Examples of “good” numerical operators/schemes

Godunov-like schemes (FKL ’11):

\[\hat{F}_4(p_1, p_2, p_3) := \text{ext}_{p \in I(p_1, p_2, p_3)} F(p) \]

where \(I(p_1, p_2, p_3) := [p_1 \land p_2 \land p_3, p_1 \lor p_2 \lor p_3] \) and

\[\text{ext}_{p \in I(p_1, p_2, p_3)} := \begin{cases}
\min_{p \in I(p_1, p_2, p_3)} & \text{if } p_2 \geq \max\{p_1, p_3\}, \\
\max_{p \in I(p_1, p_2, p_3)} & \text{if } p_2 \leq \min\{p_1, p_3\}, \\
\min_{p_1 \leq p \leq p_2} & \text{if } p_1 < p_2 < p_3, \\
\min_{p_3 \leq p \leq p_2} & \text{if } p_3 < p_2 < p_1.
\end{cases} \]
Godunov-like schemes (FKL '11) (continued):

\[\hat{F}_5(p_1, p_2, p_3) := \text{extr} \ F(p) \]

where \(I(p_1, p_2, p_3) := [p_1 \land p_2 \land p_3, p_1 \lor p_2 \lor p_3] \) and

\[
\text{extr}_{p \in I(p_1, p_2, p_3)} := \begin{cases}
\min_{p \in I(p_1, p_2, p_3)} & \text{if } p_2 \geq \max\{p_1, p_3\}, \\
\max_{p \in I(p_1, p_2, p_3)} & \text{if } p_2 \leq \min\{p_1, p_3\}, \\
\max_{p_2 \leq p \leq p_3} & \text{if } p_1 < p_2 < p_3, \\
\max_{p_2 \leq p \leq p_1} & \text{if } p_3 < p_2 < p_1.
\end{cases}
\]
Outline

Introduction and Background

A Finite Difference Framework: 1-D Case

High Dimension and High Order Extensions

Conclusion
High dimension and high order extensions

High dimension extensions

The main issue is how to discretize $u_{x_kx_\ell} u(x)$. There are 4 possible ways:

\[
\delta_{-x_k} \delta_{-x_\ell} u(x), \quad \delta_{+x_k} \delta_{+x_\ell} u(x), \quad \delta_{-x_k} \delta_{+x_\ell} u(x), \quad \delta_{+x_k} \delta_{-x_\ell} u(x)
\]
High dimension and high order extensions

High dimension extensions

The main issue is how to discretize \(u_{x_k x_{\ell}} u(x) \). There are 4 possible ways:

\[
\delta_{x_k}^- \delta_{x_{\ell}}^- u(x), \quad \delta_{x_k}^+ \delta_{x_{\ell}}^+ u(x), \quad \delta_{x_k}^- \delta_{x_{\ell}}^+ u(x), \quad \delta_{x_k}^+ \delta_{x_{\ell}}^- u(x)
\]

we are saved by the following identity:

\[
\delta_{x_k}^- \delta_{x_{\ell}}^- U_{ij} + \delta_{x_k}^+ \delta_{x_{\ell}}^+ U_{ij} - \delta_{x_k}^- \delta_{x_{\ell}}^+ U_{ij} - \delta_{x_k}^+ \delta_{x_{\ell}}^- U_{ij}
\]

\[
= h_{x_k}^2 h_{x_{\ell}}^2 \delta_{x_k}^2 \delta_{x_{\ell}}^2 U_{ij} = h_{x_k}^2 h_{x_{\ell}}^2 \delta_{x_k}^2 \delta_{x_{\ell}}^2 U_{ij}
\]

because it is an \(O(h_{x_k}^2 + h_{x_{\ell}}^2) \) approximation to \(u_{x_k x_{k} x_{\ell} x_{\ell}} \), which is a prototypical 4th order mixed derivative term in \(\Delta^2 u \)

To ensure consistency, monotonicity and stability, hence, convergence, the multi-D numerical operator \(\hat{F} \) must depend on all four approximate derivatives \(\delta_{x_k}^- \delta_{x_{\ell}}^- U_{ij}, \quad \delta_{x_k}^+ \delta_{x_{\ell}}^+ U_{ij}, \quad \delta_{x_k}^- \delta_{x_{\ell}}^+ U_{ij}, \quad \delta_{x_k}^+ \delta_{x_{\ell}}^- U_{ij} \), \(\hat{F} \) is decreasing (\(\downarrow \)) in first two arguments and increasing (\(\uparrow \)) in last two arguments.
High dimension and high order extensions

High order extensions

▶ “Bad" news: We tried but failed (as expected) to construct higher than 2rd order *monotone* FD schemes.
High dimension and high order extensions

High order extensions

- **“Bad” news:** We tried but failed (as expected) to construct higher than 2nd order *monotone* FD schemes.
- **“Good” news:** Inspired by a recent work by *Yan-Osher* (JCP, ’11) for fully nonlinear 1st order Hamilton-Jacobi equations, we are able to construct high order LDG (local discontinuous Galerkin) methods.
Outline

Introduction and Background

A Finite Difference Framework: 1-D Case

High Dimension and High Order Extensions

Conclusion
Concluding Remarks

- We propose a new and “easy to verify” framework for developing “good” FD (and LDG) methods for fully nonlinear 2nd elliptic PDEs
- We also give a guideline for designing consistent, monotone and stable FD schemes. **Key concept** is numerical moment, which may be regarded as an analogue of numerical viscosity from 1st order PDEs
- We see a strong interplay between PDE analysis and numerical analysis in this work
- Many open problems and challenging theoretical and practical issues need to be addressed: rate of convergence in C^0-norm, boundary layers, parabolic PDEs, nonlinear solvers, etc.
References

- arxiv.org/abs/1109.1183 (small book on VMM)
References

- arxiv.org/abs/1109.1183 (small book on VMM)

Thanks for Your Attention!