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Sensitivity analysis - Definition

I Definition: Sensitivity analysis is the study of the impact in the
output of a mathematical model or system caused by perturbations
in the input.

I Q: What could be an input?
A: Initial data (deterministic or random), intrinsic model parameters
(such as temperature, pressure, masses, reaction rates, etc.)

I Q: What could be an output?
A: Output data, observables of the process (such as mean values,
variances, higher moments, correlations, etc.), histograms.

I An input parameter is sensitive when even small changes to this
parameter may significantly alter the system output.
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Sensitivity analysis - Applications

I Perspectives on the design and control of multiscale systems, Braatz
et al., 2006

Yannis Pantazis join work with Markos Katsoulakis Sensitivity analysis of complex stochastic processes



Introduction
Sensitivity Analysis - Background

Sensitivity Analysis on Path Space
Examples

Sensitivity analysis - Applications

I Optimal experimental design: Construct experiments in such a way
that the parameters can be estimated from the resulting
experimental data with the highest statistical quality. Various
optimality criteria (A-optimality, D-optimality, E-optimality, etc.) are
based on the Fisher information matrix.

I Robustness: The persistence of a system to a desirable state under
the (controllable and/or uncontrollable) perturbations of external
conditions.

I Identifiability: The ability of the experimental data and/or the model
to estimate the model parameters with high fidelity.

I Reliability: To ensure that the performance of a system meets some
pre-specified target with a given probability.

I Uncertainty quantification: The science of quantitative
characterization and reduction of uncertainties in applications. For
instance, not only the values of the model parameters might contain
errors but also the model itself could be an approximation.
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Sensitivity analysis - Global vs Local

I Global sensitivity analysis: Study the effect of an input parameter to
the output under a wide range of values or under a specified
distribution. Insensitive input parameters could be treated without
big effort (assign a nominal value) while sensitive input parameters
should be treated carefully.

I Variance-based methods for global SA are: Sobol’ indices
(decompose variance in a ANOVA-like manner), Fourier amplitude
sensitivity test (FAST), Morris method.

I Information-based methods for global SA are: relative entropy (or
Kullback-Leibler divergence), mutual information (quantifies the
input-output mutual dependence).

I Local sensitivity analysis: Fix input parameters to a value and study
the effect of small perturbations around the fixed parameter to the
output. Local SA is typically a prerequisite for global SA.
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Deterministic SA

I System of ODEs:

ẏ = f (t, y ; θ) , y(0) = y0 ∈ RN

I Goal: Perform SA on the model parameters θ ∈ RK .

I Define sensitivity indices:

sk =
∂y

∂θk

I A new system of ODEs is derived and augmented to the previous:

ṡk =
∂f

∂y
sk +

∂f

∂θk
, k = 1, ...,K
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Stochastic SA - Observable-based

I By stochastic process we merely mean either discrete-time Markov
chains (DTMC) with possibly separable state space or
continuous-time jump Markov chains (CTMC) with countable state
space.

I Well-mixed reaction networks, spatially-extended on lattices systems,
discretizations of stochastic differential equations are models which
belong to the above classes of stochastic processes.

I A typical example for stochastic SA:
I {xt} is a MC, θ ∈ R is a model parameter and f is a test function

(or observable).
I Compute

S(θ, t) =
∂

∂θ
EPθt

[f (x)]
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Stochastic SA - Observable-based

I Finite difference approach. Approximate parameter sensitivity with
finite difference,

S(θ, t) =
EPθ+ε

t
[f (x)]− EPθt

[f (x)]

ε
+ O(ε)

I Applying typical sampling approaches,

Ŝ(θ, t) =
1

nε

n∑
i=1

(
f (xθ+ε,i

t )− f (xθ,it )
)

I with variance,

var (f (xθ+ε
t )− f (xθt )) = var (f (xθ+ε

t )) + var (f (xθt ))

− 2cov (f (xθ+ε
t ), f (xθt ))

I Importance quantities:
I Bias due to finite difference.
I Variance due to sampling of two different stochastic processes.
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Stochastic SA - Observable-based

I Likelihood ratio method, P. Glynn (1987–90). Parameter sensitivity
is rewritten as,

S(θ, t) =
∂

∂θ
EPθt

[f (x)] =

∫
f (x)∂θP

θ
t (x)dx

= EPθt
[f (x)∂θ logPθt (x)]

= EQθ0,t
[f (x)∂θ logQθ

0,t(x)]

I where Q0,t is the path distribution of the process in the interval [0, t].

I Derivative-free approach.

I Variance increases with time.
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Stochastic SA - Density-based

I A more holistic approach based on the probability densities of the
process.

I Assuming that xθt ∼ Pθt (x)dx and xθ+ε
t ∼ Pθ+ε

t (x)dx , why not
comparing directly the distributions?

I Majda and Gershgorin (2010) compared the distributions between a
coarse-grained climate model and a statistical climate model based
on relative entropy.

I Komorowski et al. (2011) computed the Fisher information matrix of
the path distribution of a linearized CTMC process.
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Preliminaries

I Restrict, for the moment, to DTMC processes and to the steady
state regime.

I Steady state means that the probability density of the process an any
time instant is independent of the particular time instant.

I For the parameter vector θ ∈ RK , a DTMC, {σm}m∈Z+ , is defined
with path distribution in time instants 0, 1, ...,M given by

Qθ
0,M

(
σ0, · · ·, σM

)
= µθ(σ0)pθ(σ0, σ1) · · · pθ(σM−1, σM)

where
I µθ(σ) is the stationary (or invariant) probability density function.
I pθ(σ, σ′) is the transition probability function.

I Similarly for the DTMC process, {σ̃m}m∈Z+ , induced from the
parameter vector θ + ε.
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Relative entropy in path-space

I Suggest performing parameter sensitivity analysis by comparing the
path distributions utilizing relative entropy.

I Definition: The path-wise relative entropy of Qθ
0,M w.r.t. Qθ+ε

0,M is

R
(
Qθ

0,M |Qθ+ε
0,M

)
:=

∫
log

(
dQθ

0,M

dQθ+ε
0,M

)
dQθ

0,M

I Properties: (i) R
(
Qθ

0,M |Q
θ+ε
0,M

)
≥ 0 and

(ii) R
(
Qθ

0,M |Q
θ+ε
0,M

)
= 0 iff Qθ

0,M = Qθ+ε
0,M a.e.

(iii) R
(
Qθ

0,M |Q
θ+ε
0,M

)
≤ R

(
Qθ

0,M+1 |Q
θ+ε
0,M+1

)
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Relative entropy decomposition

I Its not difficult to see that path-wise relative entropy at stationary
regime is decomposed into two parts; one independent of time and
one that grows linearly with time:

R
(
Qθ

0,M |Qθ+ε
0,M

)
=

∫
E

· · ·
∫
E

µθ(σ0)
M−1∏
i=0

pθ(σi , σi+1)

× log
µθ(σ0)

∏M−1
i=0 pθ(σi , σi+1)

µθ+ε(σ0)
∏M−1

i=0 pθ+ε(σi , σi+1)
dσ0 · · · dσM

= MH
(
Qθ

0,M |Qθ+ε
0,M

)
+R

(
µθ |µθ+ε

)
where

I H
(
Qθ

0,M |Qθ+ε
0,M

)
is the relative entropy rate (RER):

H
(

Qθ
0,M |Qθ+ε

0,M

)
= Eµθ

[∫
pθ(σ, σ′) log

pθ(σ, σ′)

pθ+ε(σ, σ′)
d σ′

]
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SA - Relative entropy rate

I For long times, RER is a sensible measure of parameter sensitivity.

I Properties:
I Infer information about the path distribution. Consequently, it

contains information not only for the invariant measure but also for
the stationary dynamics such as metastable dynamics, exit times,
time correlations, etc..

I No need for explicit knowledge of invariant measure. Thus, it is
suitable for reaction networks and non-equilibrium steady state
systems.

I RER is an observable of known test function ⇒ tractable and
statistical estimators can provide easily and efficiently its value.

I Different ε’s ⇒ SA at different directions. However, the perturbed
process is not needed to be simulated.
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SA - Fisher information matrix

I RER reminds the discrete derivative SA method.

I Q: Can we avoid the (discrete) perturbation of θ by ε?
A: Yes, by constructing the corresponding Fisher Information Matrix
(FIM).

I It holds, under smoothness assumption on θ, that

H
(
Qθ

0,M |Qθ+ε
0,M

)
=

1

2
εTFH

(
Qθ

0,M

)
ε+ O(|ε|3)

I where Fisher information matrix is defined as

FH
(
Qθ

0,M

)
= Eµθ

[∫
E

pθ(σ, σ′)∇θ log pθ(σ, σ′)∇θ log pθ(σ, σ′)Td σ′
]
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SA - Fisher information matrix

I FIM constitutes a derivative-free sensitivity analysis method.

I In optimal experimental design, the maximization of the determinant
of the FIM constitutes the D-optimality test while the minimization
of the trace of the inverse of the FIM constitutes the A-optimality
test.

I Robustness on parameter perturbations as well as parameter
identifiability can be inferred from the FIM.

I Wider FIM implies a more robust model.
I Steeper FIM implies more identifiable parameters.

I Eigenvalue analysis of FIM gives the most/least sensitive directions.
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Preliminaries

I A continuous-time jump Markov process is fully determined by the
transition rates, c(σ, σ′).

I The total rate is defined by λ(σ) =
∑
σ′ c(σ, σ′).

I For the parameter vector θ ∈ RK , a CTMC, {σt}t∈R+ , is defined. Its
path distribution in the interval [0,T ] is given by Qθ

0,T

(
{σt}t∈[0,T ]

)
.

I Similarly for the CTMC, {σ̃m}m∈Z+ , induced from the parameter
vector θ + ε.
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Relative entropy decomposition

I Q: How to compute the Radon-Nikodym derivative,
dQθ0,T
dQθ+ε

0,T

?

A: Apply Girsanov theorem which asserts that

dQθ
0,T

dQθ+ε
0,T

({σt}) =
µθ(σ0)

µθ+ε(σ0)
exp

{∫ T

0

log
cθ(σs−, σs)

cθ+ε(σs−, σs)
dNs

−
∫ T

0

[λθ(σs)− λθ+ε(σs)] ds

}
I Substituting the above Girsanov formula to the path-wise relative

entropy and exploiting the fact that we are at the steady state
regime, we obtain that

R
(
Qθ

0,T |Qθ+ε
0,T

)
= TH

(
Qθ

0,T |Qθ+ε
0,T

)
+R

(
µθ |µθ+ε

)
I Relative Entropy Rate for CTMC is given by

H
(

Qθ
0,T |Qθ+ε

0,T

)
= Eµθ

[ ∑
σ′∈E

cθ(σ, σ′) log
cθ(σ, σ′)

cθ+ε(σ, σ′)
−(λθ(σ)−λθ+ε(σ))

]
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Fisher information matrix

I Generalize the notion of Fisher information theory to the case of
CTMC processes.

I FIM is defined as

FH(Qθ
0,T ) := Eµθ

[∑
σ′∈E

cθ(σ, σ′)∇θ log cθ(σ, σ′)∇θ log cθ(σ, σ′)T

]

I Similar derivations can be obtained for time-inhomogeneous Markov
chains, semi-Markov processes and probably for processes with
memory.

I Sensitivity analysis on the logarithmic scale is also possible.
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Connection with previous methods

I Pinsker (or Csiszar-Kullback-Pinsker) inequality:

||Qθ
0,T − Qθ+ε

0,T ||TV ≤
√

2R
(
Qθ

0,T |Q
θ+ε
0,T

)
I If Qθ

0,T = qθ0,Tdx and respectively Qθ+ε
0,T = qθ+ε

0,T dx ,

|EQθ0,T
[f ]− EQθ+ε

0,T
[f ]| ≤ ||f ||∞||qθ0,T − qθ+ε

0,T ||1

≤ ||f ||∞
√

2R
(
qθ0,T | q

θ+ε
0,T

)
I Thus, if RER is insensitive to a parameter then any observable is

insensitive to this particular parameter.

I Overall, in terms of specific observables, RER and FIM are
conservative estimates of their parameter sensitivity.
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Well-mixed reaction systems - p53

I The p53 gene model is an extensively studied system which plays a
crucial role for effective tumor suppression in human beings as its
universal inactivation in cancer cells suggests.

I The p53 gene is activated in response to DNA damage and it
constitutes a negative feedback loop with the oncogene protein
Mdm2.

Event Reaction Rate

1 ∅ → x c1(σ) = bx
2 x → ∅ c2(σ) = axx + aky

x+k x

3 x → x + y0 c3(σ) = byx
4 y0 → y c4(σ) = a0y0

5 y → ∅ c5(σ) = ayy

I x corresponding to p53, y0 to Mdm2-precursor while y corresponds
to Mdm2. Parameter vector: θ = [bx , ax , ak , k , by , a0, ay ]T .
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p53 - Concentrations
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Figure: Molecule concentration of p53, Mdm2-precursor and Mdm2.
Concentration oscillations as well as time delays (phase shifts) between the
species are present due to the negative feedback loop. Furthermore, the
concentration of p53 periodically hits the zero and since negative concentrations
are not allowed, the stochastic characteristics of p53 are far from Gaussian.
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p53 - RER
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Figure: Upper panel: The Relative Entropy Rate in time for the parameter
perturbation of bx (blue), k (green) and ay (red) by +10%. The relaxation
time of the RER as an observable is ultra fast. Lower panel: RER for various
perturbation directions computed either directly (blue and red bars) or based
on FIM (green bars).
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p53 - FIM
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Figure: The proposed path-wise Fisher Information Matrix (left) based on RER
as well as the FIM based on LNA (Komorowski et al., Sensitivity, robustness,
and identifiability in stochastic chemical kinetics models, PNAS, 2011).
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p53 - Comparison
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Figure: Time-series of the species for the unperturbed parameter regime (blue),
when bx is perturbed by +10% (red) as well as when by is perturbed by +10%.
The same sequence of random numbers is used in all cases.
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Langevin out-of-equilibrium process - Definition

I SDE system with N particles:

dqt =
1

m
ptdt

dpt = −F(qt)dt −
γ

m
ptdt + σdBt

I Force: F(q) = ∇qV (q) + αG (q)
I Interaction potential: V (q) =

∑
i,j<i VM(|qi − qj |)

I Morse potential: VM(r) = De(1− e−a(r−re ))2

I The divergence-free component (∇q · G = 0) is taken to be a simple
antisymmetric force: Gi (q) = qi+1 − qi−1 , i = 1, ...,N

I If α = 0 then Langevin process is reversible. If α 6= 0 then Langevin
process is out of equilibrium.
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Langevin out-of-equilibrium process - Scheme

I Sensitivity analysis on Morse parameters: θ = [De , a, re ].

I Langevin process is time-discretized utilizing BBK integrator:

pi+ 1
2

= pi − F(qi )
∆t

2
− γ

m
pi

∆t

2
+ σ∆Wi

qi+1 = qi +
1

m
pi+ 1

2
∆t

pi+1 = pi+ 1
2
− F(qi+1)

∆t

2
− γ

m
pi+1

∆t

2
+ σ∆Wi+ 1

2

I Transition probability of the discretized process:

P(q, p, q′, p′) = P(q′|q, p)P(p′|q′, q, p)

where

I P(q′|q, p) = 1
Z0

e
− m2

σ2∆t3 |q′−q+(p−F(q) ∆t
2

+p ∆tγ
2m ) ∆t

m |
2

I P(p′|q′, q, p) = 1
Z1

e
− 1
σ2∆t
|(1+ γ∆t

2m
)p′−( m

∆t
(q′−q)−F(q′) ∆t

2 )|2
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Langevin out-of-equilibrium process - FIM
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Figure: Upper plots: Level sets (or neutral spaces) for the reversible case
(α = 0). Lower plots: Level sets for the irreversible case (α = 0.1).
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ZGB - Definition

I ZGB (Ziff-Gulari-Barshad) is a simplified spatio-temporal CO
oxidization model without diffusion.

I Despite being an idealized model, the ZGB model incorporates the
basic mechanisms for the dynamics of adsorbate species during CO
oxidation on catalytic surfaces.

Event Reaction Rate

1 ∅ → CO (1− σ(j)2)k1

2 ∅ → O2 (1− σ(j)2)(1− k1) #vacant n.n.
total n.n.

3 CO + O → CO2 + des. 1
2σ(j)(1 + σ(j))k2

#O n.n.
total n.n.

4 O + CO → CO2 + des. 1
2σ(j)(σ(j)− 1)k2

#CO n.n.
total n.n.

Table: The rate of the kth event of the jth site given that the current
configuration is σ is denoted by ck(j ;σ) where n.n. stands for nearest
neighbors.
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ZGB - RER
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Figure: Upper plot: Relative entropy rate as a function of time for
perturbations of both k1 (solid line) and of k2 (dashed line). An equilibration
time until the process reach its metastable regime is evident. Lower plot: RER
for various directions. The most sensitive parameter is k1.
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ZGB - Configurations
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Figure: Typical configurations obtained by ε0-perturbations of the most and
least sensitive parameters. The comparison with the reference configuration
reveals the differences between the most and least sensitive perturbation
parameters.
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Conclusions

I Sensitivity analysis of steady state stochastic processes utilizing RER
and FIM.

I Even though path-wise distributions was considered, the resulted
observables where easy to compute.

I Long-time stochastic dynamics are also taken into consideration.
I No need to know the stationary distribution.

I A Relative Entropy Rate Method for Path Space Sensitivity Analysis
of Stationary Complex Stochastic Dynamics, M.K. - Y.P., J. of
Chemical Physics (2013).
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