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HOLDER-TYPE APPROXIMATION FOR THE SPATIAL SOURCE
TERM OF A BACKWARD HEAT EQUATION

Dang Duc Trong,' Mach Nguyet Minh,2 Pham Ngoc Dinh Alain,?
and Phan Thanh Nam*

'Faculty of Mathematics, Vietnam National University, HoChiMinh City, Vietnam
2Dipartimmto di Matematica, Universita di Pisa Pisa, Italy
3De]mn‘mem‘ of Mathematics, Mapmo UMR 6628, Orleans, France

4Depan‘mmt of Mathematical Sciences, University of Copenhagen, Denmark

O We consider the problem of determining a pair of functions (u,f) satisfying the two-
dimensional backward heat equation

w—Au = @o(0)f (x,), t€(0,T),(x,9 €(0,1) x (0,1),
u(x,y, T) = g(x,y)
with a homogeneous Cauchy boundary condition, where ¢ and g are given approximately. The
problem is severely ill-posed. Using an interpolation method and the truncated Fourier series, we

construct a regularized solution for the source term [ and provide Holder-type error estimates
in both L2 and H' norms. Numerical experiments are provided.

Keywords Backward; Fourier series; Heat source; Interpolation; Regularization.

AMS Subject Classification 35K05; 42A16; 65D05; 66N21.

1. INTRODUCTION
Let T > 0 and let ) = (0,1) x (0,1) be a heat conduction body. We

consider the problem of determining a pair of functions (u, f) satisfying
the system
U — Au = QD(t)f(X,y), for l e (O, T)’ <X7y) € Q’
u,(0,9,1) = u,(1,9,1) = u,(x,0,1) = u,(x,1,7) =0,
u(l,y,1) =0,
u(x,y, T) = g(x,y),
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where g € L'(Q) and ¢ € L'(0, T) are given data. Note that the overdeter-
mination condition u(1,y,?) is necessary to ensure the uniqueness of the
problem (see [17, Remark 3, p. 464]). Since once the source term f
is available one will get a classical backward problem, we therefore only
concentrate on finding the function f.

It is a particular problem of finding the source F(,¢) satisfying the
heat equation

where ¢ is the spatial variable. The inverse source problem is ill-posed,
namely a solution may not exist, and even if the solution exists then it
may not depend continuously on the data. Therefore, a regularization is
necessary to make the numerical treatment possible. Since the problem is
very difficult, ones often restrict the heat source to the separate form

F(S, 1) = e()f(S)

where either ¢ or f is given. The uniqueness and conditional stability of
the heat source of this form were considered by many author [3-5, 12, 13,
22-24].

In spite of the uniqueness and stability results, the regularization
problem for unstable case is still difficult. To treat the regularization
problem, many authors have to assume that the heat source depends only
either on time, namely F(&, ¢) = ¢(¢) [6, 14, 20], or on space, namely
F(&t) = f(x) [2, 6-10, 21, 25]. The full separate form F(&,t) = ¢(t)f (&),
where ¢ is given, was investigated in [15, 16]. We realize that in the
previous works on recovering the spatial source term f(x) [6-8, 10, 15, 16,
21, 25], ones often have to require both of initial and final temperature.
Moreover, error estimates were either not given explicitly, or of logarithm-
type only.

A natural and interesting question is to approximate the spatial source
term f(x) using either initial or final temperature (but not both). Recently,
the regularization using only the initial temperature was considered in
[9, 17], and some logarithm-type error estimates were given. In this article,
we shall construct a regularized solution using only the final temperature,
and provide Holder-type estimates. Our work is motivated by the unique
determination of the spatial source term in the backward heat equation
first established in 1935 by Tikhonov [19]. We shall follow closely the
strategy of our previous article [17], which deals with the heat forward
equation. The main difference is that in the backward case we find a
refined version of the interpolation inequality (see Lemma 4 below) which
allows us to derive the Holder-type approximation. The one-dimensional
setting of our result was already announced in [18].



- Dekker Titles only] At: 09:20 26 Novenber 2010

Downl oaded By: [ Dani sh El ectronic Research Library Consortium ( DEF)

1388 D. D. Trong et al.

The remainder of this article is divided into three sections. In
Section 2, we set some notations and state our main results. Section 3
is devoted for the theoretical proof. Some numerical experiments are
provided in Section 4 to illuminate the effect of our regularization.

2. NOTATIONS AND MAIN RESULTS

Let (u, f) € (C'([0, T1; L'(Q)) N L2(0, T; H*(Q)), L*(Q)) be a solution
to (1). Multiplying the main equation of the system with W(¢,x,y) :=
P G I ) cos(nmy), then taking the integral over (f,x) €
(0, T) x ) and using the integral by parts we obtain

/ (g(x,y) — e_(“2+"2“2)7u(x, 9, 0)) cos(ax) cos(nmy)dx dy
Q

T
= / e(“2+”2”2)“_1)¢(t)dt./f(x, y) cos(ax) cos(nmy)dx dy (2)
0 Q

for all (a, n) € IR x Z. This formula motivates us to introduce the following
notations.

Definition 1. For w € L'(Q), ¢ € L'(0, T) and «, B € R, define
F(g)(a, ) = / g(x,y) cos(ax) cos(fy)dx,
Q

T
D(¢) (e, f) = / D o)

0
F b
H(g, g)(0, B) := Lipgzoy (2, f) - %.

Observe that if D(¢)(a, nm) # 0 then the variational formula (2) may
be rewritten as

—(@2 40272 T
F(f)(o, nm) = H(¢, g)(a, nm) — ———F(u(., ., 0))(a, nm). 3
/ g D(¢)(2, nm) )
On the other hand, since {v/k(m,n)cos(mnx)cos(nmy)}y _, is an
orthonormal basis for L*(Q) with x(m,n) = (2 — 1{,=0))(2 — l{=)), the
source term f € L*(Q) may be represented in terms of F(f) by

f(x,y) = Z Kk(m, n)F(f)(nm, mn) cos(mnx) cos(nmy). (4)

m,n>0

Due to (3), F(f)(a,nm) can be approximated by H(¢,g)(a, nmt)

9 9 . . . 24 2.2\
when (o + n®n?) is large enough. This is because the term ¢ *t"™)7



- Dekker Titles only] At: 09:20 26 Novenber 2010

Downl oaded By: [ Dani sh El ectronic Research Library Consortium ( DEF)

Holder-Type Approximation 1389

decays very fast and F(u(.,.,0)) is bounded uniformly. To ensure that
|D(@)(o, nm)| is not so small we need a slight condition that

either liminfe(¢) >0 or limsupe(?) < 0. (5)

t—T- (T~

Remark 1. Condition (5) holds for a broad class of functions, for
instance when ¢ is continuous at t = 7 and ¢(7T) # 0. This condition
should be compared to the condition ¢ € C'10, T] and ¢(0) # 0 in [23,
24] and condition (H) in [17] where the heat forward problem was
considered.

We have the uniqueness.

Theorem 1 (Uniqueness). Let g€ L'(Q) and let @€ LY(0,T)
satisfy (5). Then system (1) has at most one solution (u,f) in
(€10, TI; L'(Q)) N L*(0, T; H*(Q)), L*()).

In spite of the uniqueness, the problem is still ill-posed, and hence a
regularization is necessary. Our strategy is to first approximate F'(f)(a, nn)
by H (¢, g)(a, nm) for || large (which ensures that o® + n*zn? is large), and
then recover F(f)(a, nm) for |«| small. This enables us to approximate
the exact solution by a truncated Fourier series. To handle the key point
of recovering F(f)(x, nm) for |a| small, as in [17, 18] we shall use the
Lagrange interpolation polynomial.

Definition 2. Let A= {x,%,...,x,} be a set of m mutually distinct
real numbers and let w be a real function. The Lagrange interpolation
polynomial L[A; w] is

m

LA wl) = Y0 | [T | wis.

=1 \ ki~

Now we are ready to state our main result.
Theorem 2 (Regularization). Assume that
(0, /o) € (C'([0, TT; L'(Q)) N L*(0, T; H*(Q)), L*(Q))
is the (unique) solution of system (1) corresponding to (g, o), where @,

satisfies (5).
Lete > 0 and let g, € LY(Q), ¢, € LY(0,T) satisfy

||gs - g0||L1(Q) <& |- QDOHLI((),T) <e&.
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Let M, =27, N, = T'n%In(e™"), 1, € [(2/9) In(e™"), (2/9) In(e™") +
DNZ, A, ={£(r.+)),j=1,2,...,4r.} and

" H(g., g.)(mn, nn), if N, <m?+n® < M,,
" LA H(@s, g2) (o nm)(mm),  if Ny > m? + n?.

The regularized solution f; is constructed from (g, ;) by

L= Y k(m,n)E,,, cos(mnx) cos(nmy).

m,n=0,m24+n2<M;

Then
(i) limeos fo = fo in L2().
(i) If fo € H'(Q) thenlim, .o+ f; = fo in H'(Q) and there is £y > 0 depending
only on (¢o, lgll1cays 1foll s 1o (s s O) Iy ) such that

16— .
(iii) If fo € H?*(Q) then
”ﬁJ _fe“m(sz) < Ve+ 2v/2 ”ﬁ) ”H2(m Ve, Ve e (0,z).

1
L2(Q) = %—i_ ; ”]6 HHI(Q) \VE’ Ve € (O, 80).

Remark 2. Since % = 0 on 0Q), we do not expect that lim._¢+ f; = f in
H?*(Q) even if f € C*(Q) (unless %‘f = 0 on 0}, but this condition is not

reasonable).

Remark 3. To compute the Fourier coefficient F, ,,, of the regularized
solution, we just need to calculate H (¢,, g.)(o, nn) for finite points o, and
then calculate the Lagrange interpolation polynomial of H(¢., g.)(., nn) at
mn. Hence, the computational process is discrete and it can be carried out
easily by computer.

Note also that the uniqueness in Theorem 1 follows from the

convergence in Theorem 2(i). The proof of the main theorem is
represented in the next section.

3. PROOF OF THEOREM 2

We first derive some useful properties of F'(w) and D(¢p).

Lemma 1. Lewe L'(Q). Then for any o, f € R and m =0,1,2,...,

5m
'aamF(w)(% ﬁ)' < lwllpq)-
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Proof. It is straightforward to see that

(=12 / w(x, y)x™ cos(ax) cos(By)dx dy,
Q

if m is even,

m

F(w)(a, f) =

aam 1
(—=1)mth/2 / w(x, y)x" sin(ax) cos(fy)dx dy,
0

if m is odd.

The desired result follows from the wuniform boundedness
|x™ cos(ax) cos(fy)| <1 and |x" sin(ax) cos(fy)| < 1. O

Lemma 2. Let g€ L'(0,T). Then for all o, f € R,

D) (e B)| < lpliao.r-
Moreover, if ¢ satisfies (5) then

liminf (« 4+ %) |D(@) (o, B)| > 0.

(22 +p2)—>00

Proof. The first assertion, that |D(g0)(oc, ﬁ)| < ll¢ll;1, is obvious. Now
assume that ¢ satisfies the condition (5), for example liminf, ., ¢(¢) >
0. Then, there is T, € (0,7T) and C, > 0 such that ¢(¢) > C, for all ¢ €
(T,, T). Thus

|D(¢) (2, B)]

v

T
/ e<“2+ﬁ2)“‘T>go(t)dt

%

To o
/ 6(0( +p )(t_T)(P(t)dt +

0

%

Te T
2. 52 _ 24 B2y (f—
_/ e(m +B5) (T T)lgo(t)ldt +/ e(a +B)(t=T) | Cq,dt
0 Ty
1 — P HB(Tp=T)

(o + f?)

It follows that liminfi,2, g2, (0 + %) [D(@)(r)| = C, > 0, as desired. O

24 B2)(Tp—T
> =D o) g 4y + G -

We now validate the observation that F(f;)(«, nn) is approximated by
H(g., ¢.)(a, nm) for (¢ + n?n?) large.

Lemma 3. Let w, fo, &, o, &> @ be as in Theorem 2 with € € (0,1/2). Then
there exist Gy, Gy > 0 depending only on (@o, |2l 11> o (., -, 0) [l 11q)) such that
if (o2 4+ n*n?) € [7®N,, Cie™'] then

|F(fp)(ot, n) — H (s, g) (o, nm)| < Go(o® + n°*)’e.
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Proof. It follows from Lemmas 1 and 2 that

|F(g:) (2, nm) — F(go) (o nm)| < || g — & 1) < &
|D(@,) (o, n7t) — D(@o) (2, n70)| < @5 — @0l 10,7y < &

and

26

—— if+nPn* > R
o2 + n2m2

|D(¢o) (o, n1)| >

for some positive constants C; and R; depending on ¢,. Thus if o* + n*n* €
[R, 618_1] then
[D(es) (2 nm)| = [D(@o) (a1, )| — [D(@s) (21, n) — D(po) (2, )|
2C1 Cl
—&= .
~ o? + nPn? ~ 0?4 nin?

\Y

We shall show that the desired estimate follows from the triangle
inequality

|F(fo) (o, nm) — H (e, ) (o, n1) |
= ‘F(ﬁ))(aa nn) - H(QDO’ gO)(OC, nn)‘ + |H(QD0’ gO)(OC, 7’LTE) - H(¢s, gs)(a’ nn)‘ .

In fact, choosing ¢ such that

€ = mas | 120G Ollr @l + ool
- C‘]TCQM/Q ’ C12

where Njjp = T7'n7%In(2) > 0. Using the variational formula (3) we find
that

e~ CHPTE (., ., 0)) (o, n0)

|F(fo) (2, nm) — H (o, &)(2t, nm)| = ‘

D(¢y) (o, n)
22?2
% ce N g (. 0 v
- 2C1
2rnin2

< %(oc2 + n’n?)’e,

where we used o® + n*n* > n°N, > 1°N;je. It is also straightforward to see
that
|H((P0’ gO)(O(’ nn) - H(QDS’ gs)((x’ nTC)\

_ | F(g) (e nm)  F(g:) (% nm)
D(¢o) (o, nm)  D(¢,)(a, nr)
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|F(go)| . |D(‘Ps) — D(€D<))| + |D(‘Po)| . |F(gs) — F(go)|
‘D(QDO)(OC, nn)‘ . |D(¢’s)(% nn)‘
- ||g0||L18+||€00||L18 G

=

(2 + n’n%)’%e.

T ke 2
Thus, the desired result follows. O
For each n=0,1,2,... it has been shown that F(f)(x, nm) can be

approximated by H(¢,, g.)(a, nm) for || large. The key point now is that
we can recover I'(fy)(a, nm) for || small from its values for |a| large. The
following result is a refined version of Lemma 4 in [17] for real-valued
function with bounded derivatives. It was already announced in [18] and
for readers’ convenience we repeat it again with a proof.

Lemma 4 (Interpolation Inequality). Let r > 0 be an integer and A, =
{£(r+7),j=1,2,...,4r}. Let w, w be real-valued even function, w € C¥(IR).
Then

sup ‘w(x) — L[A,; zb](x)‘ < sup ‘w(s")(x)| e 4 ret sup |w(x) — w(x)].

x€[—r,r] x€[—57r,5r] XEA,

Proof. Denote m =4r and x; =r+j for 1 <j < m. For any fixed x €
[—7,r] we have the triangle inequality

lw(x) — L[A,; w](x)] < |[w(x) — L[A,; wl(x)| + |L[A,; (w — @)1(x)1(x)].  (6)

We first bound |w(z) — L(A,;w)(x)|. According to the remainder
formula of the Lagrange interpolation polynomial (see, e.g., [1, p. 9]),
there exists & € [—5r, 5r] such that

w(x) — L[A,; w](x) = % . ]]:[ (x* = x7).
Using 0 < x7 — x* < x7 (due to |x| < r < |x]) we deduce that
|w(x) — LIA; wl(x)| < ye[sigr] [ ()| ¥ (r) (7)
where
W(r) = % l’” 2 [(r+1)(1’(;—j!)...(5r)]2.

j=1
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It is straightforward to see that W;(1) = 4/15 < ¢~ /% and

Wi(r+1)  25[(5r + D(5r+2)(5r + 3)(5r +4)]° B 5
v (r) 8r+1)(8r+2)...(8r+8) 88

for any r > 1, since

5°(8r + 1)(8r +2) ... (87 +8) — 8%[(5r + 1)(5r + 2)(5r + 3)(5r + 4)]*
= 32768000000007" + 113459200000007° 4 161177600000007°
+ 120842675200007* 4+ 51101350400007° + 1199880928000
+ 1411234080007 + 6086323584 > 0.

Thus, W, (r) < ¢7’/? for all » > 1, and hence (7) reduces to

‘w(x) — L[A,; w](x)‘ < sup ‘w(s”(y)‘ e, (8)

ye[—=br,5r]

We now bound the second term |L(A,;w — w)(z)| in the righthand
side of (6). Since w and w are even, we may write

m 2 _ 2
LA w—al(x) = Y | ] e | (w(x) = dx)). (9)
=1 \wey 5 T %

For any fixed 1 < j < m, using again the estimate 0 < x; — x* < x; we

have

x? — x? x7 1 X 2

. S - — = . . —

gxf)—xﬁ gle—le le/—xkl ng-i-xk X;
B [(r+D(r+2)...06n° o2
=D = DIQr 4+ D@r+j+2) ... (6r+)) r+]

[(r+1D(r+2)...(5n 4

S 2 DI L D@ +3) .. 6rt D) 2r+1
A+ D +2) . (BN
B (2r — DI(6r + 1)!

= \PQ(T).

A direct computation shows that Wy(1) = 80/7 < ¢*/4 and

Wo(r+1) 25[(5r + 1)(Br + 2)(B5r + 3)(5r + 4)]? 3 9. 510 s
Wy(r)  2r2r+ 1)(6r+2)(6r+3)...(6r+7)  2°.6°
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for any r > 1, since

5% 2r(2r + 1)(67 +2)...(6r +7) —22.6° - [(Br+1)...(br + 4]
= 729000000007" + 2656800000007° + 3940650000007°
+ 3029460300007* + 1259670600007 4 260040420007
+ 16980120007 — 107495424 > 0.

Thus, Wy(r) < €' /4 for all r > 1. It then follows from (9) that

|L[A,; w — @](x)| < mWa(r) sup |w(y) — @ ()]

yEAy
< e sup |w(y) — w(y)|. (10)
YEAy
Substituting (8) and (10) into (6) we get the desired result. O

The last preparation for the proof of Theorem 2 is the following
lemma.

Lemma 5. For cach w € L*(Q) and M > 0 define

Fy(w)(x,y) = Z K(m,n)F(w)(mn, nm) cos(mnx) cos(nmy)

m,nZO,mZ-HL2 <M

Then

(1) im0 1Ty (w) — w”L?(n) =0.
(i) If w e H' (Q) then limy_, 4o [Ty (w) — w1y = 0 and

1
Ty (w) — wll 20y < W lwll 1) -
(iii) Ifw e H?(Q) then

22
1Ty (w) — w10y < i lwllz2q) -

Note that {cos(mnx) cos(nny)}f,f’nzo is an orthogonal basis for both of
L%*(Q) and H'(Q).

Proof. (i) The convergence follows from the Parseval identity

l|wl|? > k(m, n) [F(w)(mm, nm)|” < o0

200 =
m,n>0
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and

ITw(w) = wlleg = > &(m,n) [Fw)(mm,am)|”. (1)

m,nz(),m2+7t2>M

(i) Now assume that w € H'(Q). In this case we have

||w||i,](m = Z (1 + *(m® + n®)) k(m, n) | F(w)(mr, nn)|2 < 00

m,n>0

and

g 9, g g 2
1Ty (w) — w”iﬂ(m = Z (1 + n*(m? + nz)) K(m, n) ‘F(w)(mn, nﬂ)‘ .

m,nzO,m2+n2>M
(12)
Thus,
Mlinjoo ITp (w) — w”Hl(Q) =0
and (11) reduces to
2
ITa(w) — wl}o, = Y, k(m,n) |[F(w)(mm,nm)]
m,n>0,m2+n2>M
1
< m Z (1+7I2(m2+n2))1€(m, n)

m,n>0,m%+n2>M
2
X |F(w)(m7t, nﬂ:)|

2
< —_—

(ili)) Now assume that w € H?(Q). If M <64 then the desired
inequality is trivial since |[[Iy(w) — wllzm) < llwllgiq) < lwllg2q,) -
Therefore, it suffices to assume that M > 64. Using the integral by parts
we get

w*(m? + n®)F(w)(mn, nn) = — / Aw(x,y) cos(mmnx) cos(nmy)dx dy
Q
1
+/ (=D "w,(1,y) — w,(0,y)) cos(nmy)dy
0

1
+/ ((—1)"w),(x,l) — wy(x,O)) cos(mmx)dx.
0
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It then follows from the inequality (a+ b+ ¢)* < 3(a*+ b*+ ¢*) for
a,b,c € R that

nt Z (m? + n®)k(m, n) ‘F(w)(mn, nn)‘2

m,n20,m2+n2>M

3k(m,n)
= Z m2 + 1’L2

m,n>0,m2+n2>M

2

1
/ ((=D"w (1, ) — w,(0,y)) cos(nmy)dy

0

3kc(m, ! :
n Z %/0 ((=1)"w,(x, 1) — w,(x,0)) cos(mmx) dx
m,n>0,m2+n2>M
Py Ty fA (x.3) cos(mmx) cos(nmy)ds dy| . (13)
_— w(x, cos(mmx) cos(nm X .
m? 4+ n? | Jq Y 4 4

mn>0,m%+n2>M
We shall bound the three terms of the right-hand side of (13). We first
have
2
Z 3K(m, n)
m,n>0,m2+n2>M m2 + ’I’l2

% Z K(m, n)

mn=0,m2+n2>M

/ Aw(x,y) cos(mmnx) cos(nmy)dx dy
Q

2

A

/ Aw(x,y) cos(mmnx) cos(nmy)dx dy
Q

2
12(Q) *

IA

3
— l1Aw]|
M

To bound the second term, we use the Parseval identity in L*(0,1) to get
2

Z\/K(n, n)

n>0

= ”(_1)mwx(1> ) - wx(O’ ')”?2(0,1)

1

/(;
1

S /
0

2 2
<5 (0 + lwal b))

1
/ ((=D"w.(1, ) — w(0,y)) cos(nmy)dy
0

2

1 1
/ ((=D" = 1) wi(x, y)dx +f ((=D"x+ 1 — %) w(x, y)dx| dy
0 0

2

dy

1 1
2/ |wx(x,y)|dx+f e (3, y)] dx
0 0
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where the last inequality is due to (2a+ b)* < 5(a® + b*) for a,b € R.
Employing the fact that

K(m,n) <2y K(n,n), Z —25 Z ! < !
m

mzr+l mszrl m(m N 1) M

we have

Z 3K(m, TL)
m? + n?

m,n>0,m2+n2>M

< ¥ (yx

2

1
/ ((=D"w(1,y) — w(0,y)) cos(nmy)dy

0

/ ((—1)’”wx(1,y) — wx(O,y)) cos(nmy)dy

)

W+1>m>0 n>0
9
+ Z ( : Z\/W / ((=D)"wy(1,y) — (0, y)) cos(nmy)dy )
m>~/M+1 n>0

30(VM + 2) 30
e (Il + g, ) + T (Nl gy + Nl )

_ 60(v/M +1) (
B M

0y + 0l ) -
The third term can be bound by the same way. Thus, (13) reduces to

Y (P e)k(m, ) [F(w) (m, nm)|°

m,n>0,m%+n2>M

3 . 60(~/M + 1)
< M ||Aw||i2(m + —w
(”wx”ﬂ(m + ”wxxHI?(Q) + ” Hﬂ(m + ” 3”12(9)>
”w||H2(Q)

< \/_
where we used M > 64 in the last inequality. Therefore, it follows from
(12) that

D) = wlpg, < A+ Y (m® +n®) k(m, n) |[F(w) (mm, nm)[*

m, n>0,m2+n2>M
68(1 + %) . 8
Nl < —= N0l
M VM

This completes the proof. O

H2(Q)
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We are ready to prove the main theorem.

Proof of Theorem 2. We shall use the notation I'y, (f;) as in Lemma 5.
In the following & >0 and ( >0 are constants depending on
(@0, gl 210y 1ol @) luo (s -, 0) |, ) but independent of &.

Step 1. Bound on |F(fy)(mn, n) — Fy .| for m* +n* < M,.
We first note that M, < Cie'if0 < e < C1_7/b, where C; = G (¢y) > 0

is given in Lemma 3. Thus for N; < m? + n? < M, it follows from Lemma
3 that

|F(fp)(mm, nm) — H(@s, g)(mm, nm)| < Go(m’n® + n°n®)’e
< Gr*e”". (14)

Now we consider the case m* + n* < N;. For each n, applying Lemma
4tor=r, wl) =F()(x,nr) and w(x) = H(e,, g.)(, nm) we find that

|F(ﬁ))(’l’)’l7’[, ’I’LTE) - F‘s,m,nl
= F%)(mﬂ:, nn) - L[As, H(QDS’ gs)(-’ nn)](mrc)l
< oll o a7 + 76 max |F () (o, nm) — H (g, g:) (2, n) |

< |, e + e G((5n)* + N,)’s.

Here, we used sup,_p |w® (2)| < ||/6 ||L1 by Lemma 2 in the first inequality,
and used Lemma 3 again in the last inequality. Since ¢™/* = ¢*eg = g'/?
we conclude that

\F(fo) (mm, nt) = Byl < G(1417)°€'if m* + 0* < N, (15)

Step 2. Bound on [T, () = /i | ;1 0-
Proceeding as in the proof of Lemma 5(ii), we get

2

HFMS(]%) —Je HI(Q)
= Z (1+ 7*(m* 4+ n*)) k(m, n) |[F(fp) (mm, nm) — F, .,

m,nZO,m?-f-n2 SM;Z

<4(1+ N (14+7°N,)" sup  |F(fp)(mr, nm) — F |

| 2

2

m2+n2<Ng
F4(1+ VM) (1+72M,)  sup  |F(f)(mm, nm) — Fy |
Ne<m2+n2<M;

where we employed the fact that

#{(m,n) € Z|m* + n* < R} < 1+ VR
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Substituting (14) and (15) into the above estimate and using that N, 7, are
of order In(e7!), we conclude that

T, () — fo

for some constant g >0 depending only on
(o, ||g||141(m, ||fo||L1(m, Il 0., -,0)||L1(u))-

Step 3. Estimate errors between f, and f;.

HL(Q) S 81/10’ Ve € (O’ 80) (16)

(i) We first consider the case f, € L*(Q). Using the triangle
inequality and (16) we find that

”ﬁ) _fsnL?(m = ”FMs(ﬁ)) _f8||L2(Q) + ”FMs(ﬁ)) _ﬁ)”L‘Z(Q)

<&/l + HR . (o) _ﬁ)”L?(Q) : (17)

Thus, lim,_, ¢+ Hﬁ) — Jel 120, = 0 due to Lemma 5(i).
(i) We next consider the case f, € H'(Q). Similarly to (17) we have
Hfo _f‘c‘ HL(Q) = 81/10 + HF‘ S(ﬁ)) _fOHHl(Q) (18)

and then lim,_ ¢+ H Jo = fell ;1 q) = 0 due to the first assertion of Lemma
5(ii). Moreover, employing Lemma 5(ii) and (17) we get

1
16 = el oy = 8" + — Ul iy 877 Ve € (0,80,

(i) Finally if f; € H*(Q) then it follows from Lemma 5(iii) and (18)
that

Hﬁ) _fSHHl(Q) = gl + Qﬁ Hﬁ) ”HQ(Q) 81/14’ Ve € (0, &).

The proof is completed. g

4. NUMERICAL EXPERIMENTS

In this section, we shall examine some numerical examples to see how
our method works. For simplicity we fix 7" = 1.

Example 1. Let us consider the exact data

2 n2(1—1)
b

@o(t) =m"e g (x,y) = (1 + cos(nx)) cos(my).

Then system (1) has the exact solution

uy(x,y,1) = e =D (1 + cos(mx)) cos(my),
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Jo(x,9) = 2 cos(my) + 3 cos(mx) cos(my).

For each n =1,2,..., corresponding to the disturbed data
T .
©.(1) = @o(1), g.(x,9) = g(x,y) + o (sin(mx))* cos(nmy),
system (1) has the disturbed solution
_ T 201y, 9
w, (%, 9, 1) = up(x,9,0) + —e (sin(mx))” cos(nmy),
n
i . . .
a2, 1) = folx,y, 1) + m ((n* +5)(sin(nx))* — 2) cos(nmy).

It is straightforward to see that

1
Hg" — & H[J(Q) =——0,

n

o —ﬁ>“L2(Q) = %\/27 + 1402 4+ 3n* — o0

as n — 00. Thus, for large n then a small error of data may cause a large
error of solutions. Therefore, the problem is ill-posed and a regularization
is necessary.

Using the regularization scheme in Theorem 2 with respects to & =
n~! = 107%, we obtain the regularized solution

2 3
Jo(x,y) = P cos(my) + [ cos(my) cos(my).
with the errors
1=l = 3788 5 10, e = fll gy ~ 1247 x 2075
The approximation in this case is very good because our regularization is

particularly suitable for the case that f; is already a truncated Fourier series.

Example 2. In the second example, we examine a more complicated
situation. Let us consider the exact data

eo(t) = ¢!, g(x,y) = (1 + cos(nx))(2y° — 3y%),
which give the following exact solution to system (1),

uy(x,y,1) = ' (1 + cos(nx))(2y° — 3y%),
Jo(x,y) = (1 + cos(nx))(?yg — 3y2 —12y+6) + n? cos(mc)(Qy3 — SyQ).
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TABLE 1 Errors between the regularized solutions and the exact

solution
el lle=sll 2 /e =oll g1
" Ioll,2 /011 1

107! 0.09217686999 0.02681665374
1072 0.009558836387 0.007396833224
1074 0.003701017794 0.005197014371
106 0.001347817742 0.003666997806
10-8 0.000587555769 0.002739639346

On the other hand, for each n=1,2,..., the disturbed data

®a(1) = @o(1),
T . .
g(x,y) = g(x,y) + ;(sm(mm))z cos(2my).
produce the disturbed solution
(%7, 1) = w(x, 9, £) + e~ (sin(nmx))? cos(2my),
n

j‘,,(x,y) = fo(x,y) + mcos(2my)
47 + 1

X (271271 cos(2nmx) — (sin(m‘cx))Q) .

In this case we also encounter the instability since

1
”gn - go”[,l(ﬂ) = ; - Oa

‘ i
\h“ I A“"‘“‘“ “‘“““ ‘:‘ ‘.‘4““ ‘!‘““ “ i
° ﬂ““ i .«t“\\\“ \\\'\‘\\‘\Q‘

FIGURE 1 The disturbed solution with & = 1072,
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FIGURE 2 The regularized solution with & = 1072

=T 161402 + 3274 + 872 +

487t 4 2472 4+ 3
— 00

fo—fo

20 4 n2

as n — oQ.

1403

Using the regularization scheme in Theorem 2 with & = n~! we get the

[ Dani sh El ectroni c Research Library Consortium ( DEF)
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following regularized solutions f;, corresponding to & = g, := 107*,

Jer (x,5) = —0.6429040080 — 5.434905616 cos(nx) + 5.356285882 cos(my),
Jeo (x,9) = —0.5150600756 — 5.434905616 cos(nx) + 5.356285882 cos(my)
+ 10.21960079 cos(nx) cos(my),

o

SIS
SOSSISSIS S
,“:“:“\‘\“
SOOI
SIS
SSoss
SN

FIGURE 3 The exact solution.
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Jeu (x,9) = —0.5024461774 — 5.434905616 cos(mx) + 5.356285882 cos(my)

+ 10.21960078 cos(mx) cos(my) 4+ 0.006358334970 cos(27y)
+ 0.5464631910 cos(3ny) + 0.6065053740 cos(mx) cos(3my).

The (relative) errors between the regularized solutions and the exact
solution in the second example are given in Table 1. Figures 1-3
represent, respectively, the disturbed solution, the regularized solution
(corresponding to & =10"?) and the exact solution for a visual
comparison.
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