Vortex motion in models for thin-film ferromagnets

Matthias Kurzke
Institut für Angewandte Mathematik
Universität Bonn

Domain microstructure and dynamics in magnetic elements
ACMAC, Heraklion
April 11, 2013
Overview

Joint work with C. Melcher (Aachen), R. Moser (Bath), D. Spirn (Minnesota)

1. Vortices
2. Energetics of thin-film ferromagnets
3. Thin-film models
4. Motion laws for vortices
5. External fields and currents
Vortices

- Ferromagnets: Magnetization \mathbf{m} is vector field with $|\mathbf{m}| = 1$
- Magnetostatic energy prefers \mathbf{m} to be almost in-plane, tangential at boundary
- Typical states: vortices
- Winding number 1, direction of tangent, polarity up/down

Figure 3: Permalloy film with circular cross-section. Reproduced with permission from Hubert and Schäfer, Magnetic Domains, Springer 1998

Figure 4: A cross-tie wall in a Permalloy film. Reproduced with permission from Hubert and Schäfer, Magnetic Domains, Springer 1998
Vortices

- Ferromagnets: Magnetization \mathbf{m} is vector field with $|\mathbf{m}| = 1$
- magnetostatic energy prefers \mathbf{m} to be almost in-plane, tangential at boundary
- typical states: vortices
- winding number 1, direction of tangent, polarity up/down

Figure 3: Permalloy film with circular cross-section. Reproduced with permission from Hubert and Schäfer, Magnetic Domains, Springer 1998

Figure 4: A cross-tie wall in a Permalloy film. Reproduced with permission from Hubert and Schäfer, Magnetic Domains, Springer 1998
Energetics of a ferromagnet

Ferromagnet: $G \subset \mathbb{R}^3$ ferromagnetic body, $\mathbf{m} : G \to \mathbb{R}^3$ its magnetization.

Energy of a magnetization:

$$E(\mathbf{m}) = w^2 \int_G |\nabla \mathbf{m}|^2 + Q \int_G \varphi(\mathbf{m}) + \int_{\mathbb{R}^3} |\nabla U|^2 - 2 \int_G \mathbf{h}_{\text{ext}} \cdot \mathbf{m}$$

Constraints: $|\mathbf{m}| = 1$ in G, $\Delta U = \text{div}(\chi_G \mathbf{m})$ in $\mathcal{D}'(\mathbb{R}^3)$.

- w: exchange length
- φ: anisotropy function
- Q: quality factor
- \mathbf{h}_{ext}: applied external field

We will use: $Q = 0$ (soft material), $\mathbf{h}_{\text{ext}} = 0$ for most of the talk.
The magnetostatic energy

Magnetostatic energy term is nonlocal (field induced in all of \mathbb{R}^3):
$$\int_{\mathbb{R}^3} |\nabla U|^2 \text{ for } \Delta U = \text{div}(\chi_G \mathbf{m})$$

- $\mathbf{h} = -\nabla U$ induced field, $\text{curl} \mathbf{h} = 0$ (static Maxwell equations)
- Fourier picture: $\widehat{\nabla U} = \frac{\xi \otimes \xi}{|\xi|^2} \hat{\mathbf{m}}$
- Distributional divergence has two parts: $\text{div} \mathbf{m}$ inside G and jump part $\mathbf{m} \cdot \nu$ on ∂G
- $$\int_{\mathbb{R}^3} |\nabla U|^2 = - \int_G \mathbf{m} \cdot \nabla U = \int_G U \text{div} \mathbf{m} - \int_{\partial G} U \mathbf{m} \cdot \nu$$
Thin film approximation

If \(G = \Omega \times (0, h), \ h \ll 1 \):

- \(\partial_3 \mathbf{m} \to 0 \) if energy not too large; assume
 \[\mathbf{m} = \mathbf{m}(x_1, x_2) \chi_{(0,h)}(x_3) \]

- Write \(\mathbf{m} = (m, m_3) \), solve \(\Delta U = \text{div}(\chi_G \mathbf{m}) \) then

\[
\int_{\mathbb{R}^3} |\nabla U|^2 \approx h \int_{\Omega} m_3^2 + h^2 |\log h| \int_{\partial \Omega} (m \cdot \nu)^2 + h^2 \| \text{div} \ m \|^2_{H^{-\frac{1}{2}}}
\]

- proofs of asymptotic behavior Gioia-James, Carbou, Kohn-Slastikov, De Simone-Kohn-Müller-Otto, Moser, . . .
A model for boundary vortices

One model problem: \(m \in H^1(\Omega; S^1) \) in plane, consider

\[
E_\varepsilon(m) = \frac{1}{2} \int_\Omega |\nabla m|^2 + \frac{1}{2\varepsilon} \int_{\partial\Omega} (m \cdot \nu)^2
\]

- As core size \(\varepsilon \to 0 \): Convergence to maps with two boundary singularities at \(a_1, a_2 \in \partial\Omega \)
- Energy expansion \(E_\varepsilon(m_\varepsilon) = \pi |\log \varepsilon| + C_0 + W(a_1, a_2) \) K. 2006
- direct derivation from full micromagnetic energy Ignat-K. 2013
A model for interior vortices

Consider \(m : \Omega \to S^2 \), \(m = \tau \) on \(\partial \Omega \), \(\tau \) tangent field (of degree 1) and energy

\[
E(m) = \frac{1}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{\varepsilon^2} m_3^2
\]

- similar to Ginzburg-Landau functional for \(u : \Omega \to \mathbb{C} \)

\[
\frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{1}{2\varepsilon^2} (1 - |u|^2)^2
\]

- analyzed by Hang-Lin based on Bethuel-Brezis-Hélein

- Energy expansion \(E_\varepsilon(m_\varepsilon) = \pi |\log \varepsilon| + C_0 + W(a) \)

- \(W(a) \) depends on position; in disk: \(W(a) = \pi \log \frac{1}{1-|a|^2} \)
Energy expansion for the vortex model

\[E_\varepsilon(m) = \frac{1}{2} \int_\Omega |\nabla m|^2 + \frac{1}{\varepsilon^2} m_3^2 \]

- For small \(\varepsilon \), minimizer \(m_\varepsilon(z) = (m(z), \pm \sqrt{1 - |m(z)|^2}) \) with
 \(m(z) = e^{i\psi(z)} \rho\left(\frac{z-a}{\varepsilon} \right) \frac{z-a}{|z-a|} \)
- \(m_*(z) = e^{i\psi(z)} \frac{z-a}{|z-a|} \), \(\psi \) harmonic
- renormalized energy: \(W(a) = \lim_{r \to 0} \frac{1}{2} \int_{\Omega \setminus B_r(a)} |\nabla m_\ast|^2 - \pi |\log r| \)
- If \(J(m) \approx \pi \delta_a \) then energy excess
 \[D_\varepsilon(m; a) = E_\varepsilon(m) - W(a) - \pi |\log \varepsilon| - \gamma \geq 0 \]
- coercivity: \(D_\varepsilon \) controls convergence of \(m_\varepsilon \to m_* \) away from \(a \)
Dynamics: Landau-Lifshitz-Gilbert equation

Evolution equation:

\[\alpha \partial_t \mathbf{m} + \mathbf{m} \times \partial_t \mathbf{m} = -\text{proj}_{T_m S^2} \nabla E(\mathbf{m}) \]

- damped precessional motion of \(\mathbf{m} \) around \(\mathcal{H}_{\text{eff}} = -\nabla E(\mathbf{m}) \)
- even without precession, problems with long-time existence and uniqueness (bubbling off of harmonic spheres in harmonic map heat flow)
Dynamics: Landau-Lifshitz-Gilbert equation

Evolution equation:

$$\alpha \partial_t m + m \times \partial_t m = -\text{proj}_{T_m S^2} \nabla E(m)$$

- damped precessional motion of m around $H_{\text{eff}} = -\nabla E(m)$
- even without precession, problems with long-time existence and uniqueness (bubbling off of harmonic spheres in harmonic map heat flow)
Dynamics for the boundary vortex model

LLG for boundary vortex model $m : \Omega \to S^1$,

$$E_\varepsilon(m) = \frac{1}{2} \int_\Omega |\nabla m|^2 + \frac{1}{2\varepsilon} \int_{\partial \Omega} (m \cdot \nu)^2$$

reduces to gradient flow (no precession in S^1) Kohn-Slastikov

$$\alpha_\varepsilon \partial_t m = -\text{proj}_{T_m S^2} \nabla_{L^2} E_\varepsilon(m)$$

• can see vortex motion for $\alpha_\varepsilon = \frac{1}{|\log \varepsilon|}$
• vortices move with gradient flow of renormalized energy:
 $$\dot{a}_j = -\frac{2}{\pi} \nabla_{a_j} W(a_1, a_2)$$
• proof using Sandier-Serfaty method of Γ-convergence of gradient flows: K. 2007 (steepest descent for PDE \rightsquigarrow steepest descent for ODE)
Dynamics for interior vortices

Huber 1982: vortex should observe a Thiele equation (vortex center as collective coordinate)

\[\pi(\dot{a} + 2qa^\perp) = -\nabla W(a) \]

if damping \(\alpha \approx \frac{1}{|\log \varepsilon|} \) (formal calculations), \(q = \pm 1 \) polarity

Theorem (K.-Melcher-Moser-Spirn, ARMA 2011)

Given well-prepared initial data, the LLG equations for the model problem have smooth solutions for all time. Vorticity \(\omega \) and energy density \(\alpha_\varepsilon e_\varepsilon \) converge as \(\varepsilon \to 0 \) to delta masses supported at the vortex centers. The vortex centers follow the Thiele-Huber ODE.
Dynamics for interior vortices

Huber 1982: vortex should observe a Thiele equation (vortex center as collective coordinate)

\[\pi(\dot{a} + 2q\dot{a}^\perp) = -\nabla W(a) \]

if damping \(\alpha \approx \frac{1}{|\log \varepsilon|} \) (formal calculations), \(q = \pm 1 \) polarity

Theorem (K.-Melcher-Moser-Spirn, ARMA 2011)
Given well-prepared initial data, the LLG equations for the model problem have smooth solutions for all time. Vorticity \(\omega \) and energy density \(\alpha \varepsilon e_\varepsilon \) converge as \(\varepsilon \to 0 \) to delta masses supported at the vortex centers. The vortex centers follow the Thiele-Huber ODE.
Towards a proof: fundamental quantities

Set $f_\varepsilon(m) = \Delta m + |\nabla m|^2 m - \frac{1}{\varepsilon^2} (m_3 e_3 - m_3^2 m)$ then

$$\alpha_\varepsilon \partial_t m + m \times \partial_t m = f_\varepsilon$$

Can consider

- "spin": where is $m_3 = \pm 1$?
- energy density $e_\varepsilon(m) = \frac{1}{2} |\nabla m|^2 + \frac{1}{2\varepsilon^2} m_3^2 \approx \pi |\log \varepsilon| \delta_a$
- magnetic vorticity $\omega(m) = \langle m, (\partial_x m \times \partial_y m) \rangle \approx 2\pi \delta_a$
- in-plane Jacobian $J(m) = \partial_1 m_1 \partial_2 m_2 - \partial_2 m_1 \partial_1 m_2 \approx \pi \delta_a$
Evolution of fundamental quantities

\[\alpha_\varepsilon \partial_t \mathbf{m} + \mathbf{m} \times \partial_t \mathbf{m} = \mathbf{f}_\varepsilon \]

Energy density (multiply with \(\partial_t \mathbf{m} \))

\[\partial_t e_\varepsilon(\mathbf{m}) + \alpha_\varepsilon |\partial_t \mathbf{m}|^2 = \text{div} \left\langle \partial_t \mathbf{m}, \nabla \mathbf{m} \right\rangle \]

Vorticity (multiply with \(\nabla \mathbf{m} \) and take the curl):

\[\partial_t \omega(\mathbf{m}) = \text{curl div}(\nabla \mathbf{m} \otimes \nabla \mathbf{m}) - \alpha_\varepsilon \text{curl} \left\langle \partial_t \mathbf{m}, \nabla \mathbf{m} \right\rangle \]

- \(\text{div}(\nabla \mathbf{m} \otimes \nabla \mathbf{m}) \) related to \(\nabla \mathbf{W} \) (error bounded by \(D_\varepsilon \))
- Convergence of \(\left\langle \partial_t \mathbf{m}, \nabla \mathbf{m} \right\rangle \)?
- Can avoid this term by cancellation using good test functions that behave like \(x \) and \(x^\perp \) near the vortex (proof of KMMS11)
Evolution of fundamental quantities

\[\alpha \varepsilon \partial_t m + m \times \partial_t m = f_\varepsilon \]

Energy density (multiply with \(\partial_t m \))

\[\partial_t e_\varepsilon(m) + \alpha \varepsilon |\partial_t m|^2 = \text{div} \left< \partial_t m, \nabla m \right> \]

Vorticity (multiply with \(\nabla m \) and take the curl):

\[\partial_t \omega(m) = \text{curl} \text{div}(\nabla m \otimes \nabla m) - \alpha \varepsilon \text{curl} \left< \partial_t m, \nabla m \right> \]

- \(\text{div}(\nabla m \otimes \nabla m) \) related to \(\nabla W \) (error bounded by \(D_\varepsilon \))
- Convergence of \(\left< \partial_t m, \nabla m \right> \)?
- Can avoid this term by cancellation using good test functions that behave like \(x \) and \(x \perp \) near the vortex (proof of KMMS11)
Evolution of fundamental quantities

\[\alpha \varepsilon \partial_t \mathbf{m} + \mathbf{m} \times \partial_t \mathbf{m} = \mathbf{f}_\varepsilon \]

Energy density (multiply with \(\partial_t \mathbf{m} \))

\[\partial_t e_\varepsilon(\mathbf{m}) + \alpha \varepsilon |\partial_t \mathbf{m}|^2 = \text{div} \left\langle \partial_t \mathbf{m}, \nabla \mathbf{m} \right\rangle \]

Vorticity (multiply with \(\nabla \mathbf{m} \) and take the curl):

\[\partial_t \omega(\mathbf{m}) = \text{curl} \text{div}(\nabla \mathbf{m} \otimes \nabla \mathbf{m}) - \alpha \varepsilon \text{curl} \left\langle \partial_t \mathbf{m}, \nabla \mathbf{m} \right\rangle \]

- \(\text{div}(\nabla \mathbf{m} \otimes \nabla \mathbf{m}) \) related to \(\nabla W \) (error bounded by \(D_\varepsilon \))
- Convergence of \(\left\langle \partial_t \mathbf{m}, \nabla \mathbf{m} \right\rangle \)?
- Can avoid this term by cancellation using good test functions that behave like \(x \) and \(x^\perp \) near the vortex (proof of KMMS11)
Evolution of fundamental quantities

\[\alpha_\varepsilon \partial_t \mathbf{m} + \mathbf{m} \times \partial_t \mathbf{m} = f_\varepsilon \]

Energy density (multiply with \(\partial_t \mathbf{m} \))

\[\partial_t e_\varepsilon(m) + \alpha_\varepsilon |\partial_t \mathbf{m}|^2 = \text{div} \left(\langle \partial_t \mathbf{m}, \nabla \mathbf{m} \rangle \right) \]

Vorticity (multiply with \(\nabla \mathbf{m} \) and take the curl):

\[\partial_t \omega(m) = \text{curl} \text{div}(\nabla \mathbf{m} \otimes \nabla \mathbf{m}) - \alpha_\varepsilon \text{curl} \left(\langle \partial_t \mathbf{m}, \nabla \mathbf{m} \rangle \right) \]

- \(\text{div}(\nabla \mathbf{m} \otimes \nabla \mathbf{m}) \) related to \(\nabla W \) (error bounded by \(D_\varepsilon \))
- Convergence of \(\langle \partial_t \mathbf{m}, \nabla \mathbf{m} \rangle \)?
- Can avoid this term by cancellation using good test functions that behave like \(x \) and \(x^\perp \) near the vortex (proof of KMMS11)
Remarks

- Problem: bubbles where $\omega \approx 4\pi \delta_b$ (full cover), but $J \approx \pi \delta_{b+} - \pi \delta_{b-} \approx 0$ in $W^{-1,1}$ (dipole)
- typical bubble energy is 4π (not divergent as $\varepsilon \to 0$)
- can rule out bubbling if excess energy $D_\varepsilon(m_\varepsilon(t); a(t))$ is $\ll 4\pi$ for all times
- can avoid cancellation approach using convergence results for $\langle \partial_t m, \nabla m \rangle$ K.-Melcher-Moser 2011
- evolution identity for spin is used to show that $\text{div} \langle m^\perp, \nabla m \rangle \to 0$ in spacetime
Convergence results (KMM 2011)

There is a curve $a(t) \in H^1$ such that $\alpha_\varepsilon e_\varepsilon (m_\varepsilon (t)) \to \pi \delta_{a(t)}$ and $\omega (m_\varepsilon (t)) \to 2\pi \delta_{a(t)}$. For any $\eta \in C^1(\Omega)$,

$$\pi (\eta (a(t_1)) - \eta (a(t_2))) = \lim_{\varepsilon \to 0} \frac{1}{\log \frac{1}{\varepsilon}} \int_{t_1}^{t_2} \int_{\Omega} \nabla \eta \cdot \langle \partial_t m_\varepsilon, \nabla m_\varepsilon \rangle$$

$$\pi \int_{t_1}^{t_2} |\dot{a}|^2 \leq \liminf_{\varepsilon \to 0} \frac{1}{\log \frac{1}{\varepsilon}} \int_{t_1}^{t_2} \int_{\Omega} |\partial_t m_\varepsilon|^2$$

$$\pi \text{id}_{2 \times 2} \int_{t_1}^{t_2} \eta (a(t)) = \lim_{\varepsilon \to 0} \frac{1}{\log \frac{1}{\varepsilon}} \int_{t_1}^{t_2} \int_{\Omega} \eta \nabla m_\varepsilon \otimes \nabla m_\varepsilon$$

Main idea for proof: test energy identity with time-dependent $\xi(t, x) = \dot{a}(t) \cdot (x - a(t)) \chi(x - a(t))$ for a cutoff function χ

Quantitative convergence rate and equipartition K.-Spirn 2010
Proof via evolution identity for vorticity

Multiply equation with ∇m and take the curl:

$$\partial_t \omega(m) = \text{curl} \left(\text{div}(\nabla m \otimes \nabla m) - \langle \alpha \varepsilon \partial_t m, \nabla m \rangle \right)$$

Integrate against a test function ϕ with $\phi(x) = x^\perp$ near the vortex and pass to the limit. Formally (up to small error terms):

- $\int_{\Omega} \partial_t \omega(m) \phi \to 2\pi \dot{a}^\perp$
- $\int_{\Omega} \nabla \nabla^\perp \phi : (\nabla m \otimes \nabla m) \to -\pi \nabla^\perp \phi \cdot \nabla a W = -\pi \nabla a W$
- Using $\psi(x) = x$ so $\nabla \psi = \nabla^\perp \phi$:
 $$\int_{t_1}^{t_2} \int_{\Omega} \alpha \varepsilon \nabla \psi \cdot (\partial_t m, \nabla m) \to -\pi(a(t_2) - a(t_1)); \text{ differentiate}$$
- Combine this to obtain motion law!
Proof via evolution identity for vorticity

Multiply equation with ∇m and take the curl:

$$\partial_t \omega(m) = \text{curl}\left(\text{div}(\nabla m \otimes \nabla m) - \langle \alpha_\varepsilon \partial_t m, \nabla m \rangle \right)$$

Integrate against a test function ϕ with $\phi(x) = x^\perp$ near the vortex and pass to the limit. Formally (up to small error terms):

- $\int_{\Omega} \partial_t \omega(m) \phi \to 2\pi \dot{a}^\perp$
- $\int_{\Omega} \nabla \nabla^\perp \phi : (\nabla m \otimes \nabla m) \to -\pi \nabla^\perp \phi \cdot \nabla a W = -\pi \nabla a W$
- Using $\psi(x) = x$ so $\nabla \psi = \nabla^\perp \phi$:
 $$\int_{t_1}^{t_2} \int_{\Omega} \alpha_\varepsilon \nabla \psi \cdot \langle \partial_t m, \nabla m \rangle \to -\pi (a(t_2) - a(t_1)); \text{ differentiate}$$
- Combine this to obtain motion law!
Proof via evolution identity for vorticity

Multiply equation with ∇m and take the curl:

$$\partial_t \omega(m) = \text{curl} \left(\text{div}(\nabla m \otimes \nabla m) - \langle \alpha \partial_t m, \nabla m \rangle \right)$$

Integrate against a test function ϕ with $\phi(x) = x^\perp$ near the vortex and pass to the limit. Formally (up to small error terms):

- $\int_\Omega \partial_t \omega(m) \phi \to 2\pi \dot{a}^\perp$
- $\int_\Omega \nabla \nabla^\perp \phi : (\nabla m \otimes \nabla m) \to -\pi \nabla^\perp \phi \cdot \nabla a W = -\pi \nabla a W$
- Using $\psi(x) = x$ so $\nabla \psi = \nabla^\perp \phi$:
 $$\int_{t_1}^{t_2} \int_\Omega \alpha_\varepsilon \nabla \psi \cdot \langle \partial_t m, \nabla m \rangle \to -\pi (a(t_2) - a(t_1));$$ differentiate
- Combine this to obtain motion law!
Proof via evolution identity for vorticity

Multiply equation with $\nabla \mathbf{m}$ and take the curl:

$$\partial_t \omega(\mathbf{m}) = \text{curl} \left(\text{div}(\nabla \mathbf{m} \otimes \nabla \mathbf{m}) - \langle \alpha \varepsilon \partial_t \mathbf{m}, \nabla \mathbf{m} \rangle \right)$$

Integrate against a test function ϕ with $\phi(x) = x_\perp$ near the vortex and pass to the limit. Formally (up to small error terms):

- $\int_\Omega \partial_t \omega(\mathbf{m}) \phi \to 2\pi \dot{a}_\perp$
- $\int_\Omega \nabla \nabla_\perp \phi : (\nabla \mathbf{m} \otimes \nabla \mathbf{m}) \to -\pi \nabla_\perp \phi \cdot \nabla_a W = -\pi \nabla_a W$
- Using $\psi(x) = x$ so $\nabla \psi = \nabla_\perp \phi$:
 $$\int_{t_1}^{t_2} \int_\Omega \alpha \varepsilon \nabla \psi \cdot \langle \partial_t \mathbf{m}, \nabla \mathbf{m} \rangle \to -\pi (a(t_2) - a(t_1));$$ differentiate
- Combine this to obtain motion law!
Proof via evolution identity for vorticity

Multiply equation with ∇m and take the curl:

$$\partial_t \omega(m) = \text{curl} \left(\text{div}(\nabla m \otimes \nabla m) - \langle \alpha \varepsilon \partial_t m, \nabla m \rangle \right)$$

Integrate against a test function ϕ with $\phi(x) = x^\perp$ near the vortex and pass to the limit. Formally (up to small error terms):

- $\int_\Omega \partial_t \omega(m) \phi \to 2\pi \dot{a}^\perp$
- $\int_\Omega \nabla \nabla^\perp \phi : (\nabla m \otimes \nabla m) \to -\pi \nabla^\perp \phi \cdot \nabla a W = -\pi \nabla a W$
- Using $\psi(x) = x$ so $\nabla \psi = \nabla^\perp \phi$:
 $\int_{t_1}^{t_2} \int_\Omega \alpha \varepsilon \nabla \psi \cdot \langle \partial_t m, \nabla m \rangle \to -\pi (a(t_2) - a(t_1))$; differentiate
- Combine this to obtain motion law!
Control of the error terms

- Let $a(t) =$ location of concentration of $\omega(m(t))$
- Let $\hat{a}(t) =$ solution of ODE
- Growth of equation error $|\hat{a} - \dot{a}|$ can be bounded by D_ε
- Growth of excess $\frac{d}{dt} D_\varepsilon$ can be controlled (via ODE and control of kinetic energy) by $|\hat{a} - \dot{a}|$
- Gronwall: If $D_\varepsilon(0) \to 0$ and $a(0) = \hat{a}(0)$ then $D_\varepsilon(t) \to 0$ and $\hat{a}(t) = a(t)$ for all times
Moving vortices out of equilibrium

Can we affect vortex motion by forces?

- **external (spin-polarized) current**: replace ∂_t by $\partial_t + \gamma v \cdot \nabla$ (possibly different γ's for gradient and Schrödinger term)
 - for small v does not lead away from well-preparedness
 - need additional convergence result K.-Melcher-Moser 2011

\[
2\pi \int_{t_1}^{t_2} v^\perp \cdot \dot{a} = - \lim_{\varepsilon \to 0} \int_{t_1}^{t_2} \int_\Omega \langle m_\varepsilon \times (v \cdot \nabla) m_\varepsilon, \partial_t m_\varepsilon \rangle
\]

- **external magnetic field**: add $- \int_\Omega h(t) \cdot m$ to energy
 - changes renormalized energy W
 - for small fields still have coercivity
 - K.-Melcher-Moser 2012
Moving vortices out of equilibrium

Can we affect vortex motion by forces?

• **external (spin-polarized) current**: replace ∂_t by $\partial_t + \gamma v \cdot \nabla$
 (possibly different γ's for gradient and Schrödinger term)
 • for small v does not lead away from well-preparedness
 • need additional convergence result K.-Melcher-Moser 2011

\[
2\pi \int_{t_1}^{t_2} v_\perp \cdot \dot{a} = -\lim_{\varepsilon \to 0} \int_{t_1}^{t_2} \int_{\Omega} \langle m_\varepsilon \times (v \cdot \nabla)m_\varepsilon, \partial_t m_\varepsilon \rangle
\]

• **external magnetic field**: add $-\int_\Omega h(t) \cdot m$ to energy
 • changes renormalized energy W
 • for small fields still have coercivity
 • K.-Melcher-Moser 2012
Some remarks about the problem with applied field
K.-Melcher-Moser 2012

- Energy
 \[E_{\varepsilon}(h; m) = \int_{\Omega} \frac{1}{2} |\nabla m|^2 + \frac{m^2}{\varepsilon^2} - h \cdot m \]

- optimal "h-harmonic" limit map
 \[\tilde{m}_*(z; a) = m_*(z; a)e^{i\phi} = e^{i\psi_\phi(h,a)} \frac{z - a}{|z - a|} \]
 where \(\phi(h, a) \) minimizes
 \[\int_{\Omega} \frac{1}{2} |\nabla \phi|^2 - h \cdot (e^{i\phi} m_*(z; a)) \]

no applied field: \(m_*(\cdot, 0) \) in a disk

numerics by J. Steiner
Some remarks about the problem with applied field
K.-Melcher-Moser 2012

- Energy
 \[E_\varepsilon(h; m) = \int_\Omega \frac{1}{2} |\nabla m|^2 + \frac{m_3^2}{\varepsilon^2} - h \cdot m \]

- optimal “h-harmonic” limit map
 \[\tilde{m}_*(z; a) = m_*(z; a)e^{i\phi} = e^{i\psi+\phi(h,a)} \frac{z - a}{|z - a|} \]
 where \(\phi(h, a) \) minimizes \(\int_\Omega \frac{1}{2} |\nabla \phi|^2 - h \cdot (e^{i\phi} m_*(z; a)) \)

applied field \(h = (0, -40), \tilde{m}_*(\cdot, 0) \)

numerics by J. Steiner
Some remarks about the problem with applied field

K.-Melcher-Moser 2012

- Energy

\[E_\varepsilon(h; m) = \int_\Omega \frac{1}{2} |\nabla m|^2 + \frac{m_3^2}{\varepsilon^2} - h \cdot m \]

- optimal “\(h\)-harmonic” limit map

\[\tilde{m}_*(z; a) = m_*(z; a) e^{i\phi} = e^{i\psi+\phi(h,a)} \frac{z - a}{|z - a|} \]

where \(\phi(h, a)\) minimizes \(\int_\Omega \frac{1}{2} |\nabla \phi|^2 - h \cdot (e^{i\phi} m_*(z; a))\)

applied field \(h = (0, -40), \tilde{m}_*(\cdot, a_*)\); \(a_*\) chosen as minimizer

numerics by J. Steiner
Renormalized energy for the problem with field

- New renormalized energy

\[W(h, a) = \lim_{r \to 0} \int_{\Omega \setminus B_r(a)} \frac{1}{2} |\nabla \tilde{m}_*|^2 - h \cdot \tilde{m}_* - \pi \log \frac{1}{r} \]

- Noether theorem: if \(\Phi: \Omega \to \mathbb{R}^2 \) is constant near \(a \) then

\[\Phi(a) \cdot \nabla_a W(h, a) = \int_{\Omega} \nabla \Phi : \left(\left(\frac{1}{2} |\nabla \tilde{m}_*|^2 - h \cdot m_* \right) \text{id} - \nabla \tilde{m}_* \otimes \nabla \tilde{m}_* \right) \]

- Coercivity for small energy excess and small field can be shown using Taylor expansion of exp

- Smallness from smallest Dirichlet eigenvalue
Alternative PDE approach

Previously

- control D_ε using evolution identities
- $D_\varepsilon \to 0$ implies strong convergence

Can we show this more directly? K.-Melcher-Moser-Spirn 2012

- if $D_\varepsilon = O(1)$ we have weak convergence $\nabla m_\ast \otimes \nabla m_\ast \rightharpoonup \mu(t)$ for some matrix valued measure
- show $\mu(t) = \nabla m_\ast \otimes \nabla m_\ast + \sum_k A_k(t) \delta_{a_k(t)}$ using the PDE and partial regularity style estimates
- A_k do not affect the motion law
- bubbling may occur and change vortex polarity (changes motion law):

$$\pi(\dot{a} + 2q(t)\dot{a}^\perp) = -\nabla W(a), \quad q(t) \in \{\pm 1\}$$
Alternative PDE approach

Previously

- control D_ε using evolution identities
- $D_\varepsilon \to 0$ implies strong convergence

Can we show this more directly? K.-Melcher-Moser-Spirn 2012

- if $D_\varepsilon = O(1)$ we have weak convergence $\nabla m \otimes \nabla m \rightharpoonup \mu(t)$ for some matrix valued measure
- show $\mu(t) = \nabla m_* \otimes \nabla m_* + \sum_k A_k(t) \delta_{a_k(t)}$ using the PDE and partial regularity style estimates
- A_k do not affect the motion law
- bubbling may occur and change vortex polarity (changes motion law):

$$\pi(\dot{a} + 2q(t)\dot{a}^\perp) = -\nabla W(a), \quad q(t) \in \{\pm 1\}$$
Open problems and ongoing research

- Uniqueness and coercivity for large fields? Related to elliptic sine-Gordon equation
 \[-\Delta u + \lambda \sin(u + \theta(x)) = 0\]

- Include magnetostatic interaction
- Large fields / currents can create bubbles. How?
- Bubbling in PDE approach is not controlled
- Do not know how energy dissipates (vortex-free: damped wave equation Miot 2010); nonlinear version?
- Finite \(\varepsilon\)? Explicit estimates for GLS Jerrard-Spirn, GLH K.-Spirn 2011
- Realistic derivation of motion law from full micromagnetic energy