Random Fourier series as rough paths and applications to a class of SPDEs

Sebastian Riedel

Technische Universität Berlin

Workshop *Stochastic Methods in Finance and Physics*,
Heraklion, Crete,
July 19, 2013
Outline

What are (Gaussian) rough paths?

Random Fourier series

Applications to SPDEs
Outline

What are (Gaussian) rough paths?

Random Fourier series

Applications to SPDEs
Motivation for rough paths: robustness

Consider map

$$\omega \mapsto I_V(\omega, \xi)$$

where ω Brownian trajectories and $I_V(\cdot, \xi)$ solution to

$$dY_t = V_0(Y_t) \, dt + \sum_{i=1}^{d} V_i(Y_t) \circ dB_t^i; \quad Y_0 = \xi \in \mathbb{R}^m.$$
What are (Gaussian) rough paths?

\[(\Xi, \varrho) \xrightarrow{I_V(\cdot, \xi)} (\tilde{\Xi}, \varrho)\] (continuous)

\[S_{\mu^d} \uparrow \text{measurable} \]

\[(C_0([0, T]; \mathbb{R}^d), \mathcal{B}, \mu^d) \xrightarrow{I_V(\cdot, \xi)} C_0([0, T]; \mathbb{R}^m)\]

(not continuous)

\[\mu^d = \mu \otimes \cdots \otimes \mu \text{ d-dimensional Wiener measure}\]

- (\Xi, \varrho) metric space, polish, rough paths space
- \(S_{\mu^d}\) injective, lift map
What are (Gaussian) rough paths?

\[(\Xi, \varrho) \quad \xrightarrow{I_V(\cdot, \xi)} \quad (\tilde{\Xi}, \varrho)\] (continuous)

\[S_{\mu^d} \uparrow \text{measurable} \quad \xrightarrow{I_V(\cdot, \xi)} \quad \text{not continuous}\]

\[\left(C_0([0, T]; \mathbb{R}^d), \mathcal{B}, \mu^d \right) \xrightarrow{I_V(\cdot, \xi)} C_0([0, T]; \mathbb{R}^m)\]

\[\mu^d = \mu \otimes \cdots \otimes \mu \quad d\text{-dimensional Wiener measure}\]

- \((\Xi, \varrho)\) metric space, polish, rough paths space
- \(S_{\mu^d}\) injective, lift map
What are (Gaussian) rough paths?

\[(\Xi, \varrho) \xrightarrow{I_V(\cdot, \xi)} (\tilde{\Xi}, \varrho)\]

- \(S_{\mu^d}\) measurable
- \((C_0([0, T]; \mathbb{R}^d), \mathcal{B}, \mu^d) \xrightarrow{I_V(\cdot, \xi)} C_0([0, T]; \mathbb{R}^m)\)

\[\mu^d = \mu \otimes \cdots \otimes \mu\]
\(d\)-dimensional Wiener measure

- \((\Xi, \varrho)\) metric space, polish, rough paths space
- \(S_{\mu^d}\) injective, lift map
What are (Gaussian) rough paths?

- generalizes to centered Gaussian measures
 \[\gamma = \gamma_1 \otimes \cdots \otimes \gamma_d \]

Theorem (Friz, Victoir; AIHP 2010)

If covariances

\[(s, t) \mapsto R_{\gamma_i}(s, t) = \int \omega(s)\omega(t) \gamma_i(d\omega), \quad i = 1, \ldots, d \]

have finite 2D \(\rho \)-variation, \(\rho < 2 \), then \(\exists \) lift map \(S_{\gamma} \) to some rough paths space “in a natural way”.

• generalizes to centered Gaussian measures
 \[\gamma = \gamma_1 \otimes \cdots \otimes \gamma_d. \]

Theorem (Friz, Victoir; AIHP 2010)

If covariances

\[(s, t) \mapsto R_{\gamma_i}(s, t) = \int \omega(s)\omega(t) \gamma_i(d\omega), \quad i = 1, \ldots, d \]

have finite 2D ρ-variation, $\rho < 2$, then \(\exists \) lift map S_γ to some rough paths space “in a natural way”.
SDEs driven by Gaussian rough paths

Can solve

\[dY_t = V_0(Y_t) \, dt + \sum_{i=1}^{d} V_i(Y_t) \, dX_t^i \equiv V(Y_t) \, dX_t; \quad Y_0 = \xi \]

with \(X_t(\omega) = S_\gamma(t, \omega(t)) \),

\[
\begin{align*}
(\Xi, \varrho) & \quad \xrightarrow{I_V(\cdot, \xi)} \quad (\tilde{\Xi}, \varrho) \\
S_\gamma \uparrow \text{measurable} & \quad \downarrow \pi \\
(C_0([0, T]; \mathbb{R}^d), B, \gamma) & \quad \xrightarrow{\exists l_V(\cdot, \xi)} \quad C_0([0, T]; \mathbb{R}^m)
\end{align*}
\]
Some more results about Gaussian rough paths:

- stochastic integration theory
- sharp tail estimates for stochastic integrals (and related objects)
- numerical approximation theory for SDEs
- support theorems
- Freidlin-Wentzell large deviations
- Hörmander Theorem
- ...
What is 2D ρ-variation?

- Have to make sense of integrals of the form

$$\int_{[0,T]^2} R(s, t) \, dR(s, t) \quad = \quad \int_{[0,T]^2} R(s, t) \, \partial_s \partial_t R(s, t) \, ds \, dt$$

- If $\partial_s \partial_t R(s, t)$ is finite measure, integral should exist
- This is the case if R has finite 1-variation. Example: Brownian motion

$$\mathbb{E} \left| \int_0^T \tilde{B}_s \, dB_s \right|^2 \; = \; \int_{[0,T]^2} (s \wedge t) \, \delta_{s,t} \, ds \, dt \; = \; \int_0^T s \, ds$$

- Typically, R “smooth” outside the diagonal D
What is 2D ρ-variation?

- Have to make sense of integrals of the form
 \[\int_{[0,T]^2} R(s, t) \, dR(s, t) = \int_{[0,T]^2} R(s, t) \, \partial_s \partial_t R(s, t) \, ds \, dt \]

- If $\partial_s \partial_t R(s, t)$ is finite measure, integral should exist

- This is the case if R has finite 1-variation. Example: Brownian motion

\[
\mathbb{E} \left| \int_0^T \tilde{B}_s \, dB_s \right|^2 = \int_{[0,T]^2} (s \wedge t) \, \delta_{s,t} \, ds \, dt = \int_0^T s \, ds
\]

- Typically, R “smooth” outside the diagonal D
What are (Gaussian) rough paths?

What is 2D ρ-variation?

- Have to make sense of integrals of the form

$$\int_{[0,T]^2} R(s, t) \, dR(s, t) = \int_{[0,T]^2} R(s, t) \partial_s \partial_t R(s, t) \, ds \, dt$$

- If $\partial_s \partial_t R(s, t)$ is finite measure, integral should exist
- This is the case if R has finite 1-variation. Example: Brownian motion

$$\mathbb{E} \left| \int_0^T \tilde{B}_s \, dB_s \right|^2 = \int_{[0,T]^2} (s \wedge t) \delta_{s,t} \, ds \, dt = \int_0^T s \, ds$$

- Typically, R “smooth” outside the diagonal D
What is 2D ρ-variation?

- Have to make sense of integrals of the form

$$\int_{[0,T]^2} R(s,t) \, dR(s,t) \quad = \quad \int_{[0,T]^2} R(s,t) \, \partial_s \partial_t R(s,t) \, ds \, dt$$

- If $\partial_s \partial_t R(s,t)$ is finite measure, integral should exist

- This is the case if R has finite 1-variation. Example: Brownian motion

$$E \left| \int_0^T \tilde{B}_s \, dB_s \right|^2 = \int_{[0,T]^2} (s \wedge t) \, \delta_{s,t} \, ds \, dt = \int_0^T s \, ds$$

- Typically, R “smooth” outside the diagonal D
• Notation:

\[R([s, t] \times [u, v]) := \text{Cov}(X_t - X_s, X_v - X_u) = \mathbb{E}(X_t - X_s)(X_v - X_u), \]

\[\sigma^2(s, t) := R([s, t]^2) = \text{Var}(X_t - X_s) \]

• If \(\varphi \) positive test function,

\[
\langle \partial_s \partial_t R(s, t), \varphi \rangle = \lim_{|\Pi| \to 0} \sum_{t_i \in \Pi} \varphi(t_i, t_i) \sigma^2(t_i, t_{i+1}) + \sum_{t_i, t_j \in \Pi} \varphi(t_i, t_j) R([t_i, t_{i+1}] \times [t_j, t_{j+1}]) \geq 0
\]
What are (Gaussian) rough paths?

Notation:

\[R([s, t] \times [u, v]) : = \text{Cov}(X_t - X_s, X_v - X_u) \]
\[= \mathbb{E}(X_t - X_s)(X_v - X_u), \]
\[\sigma^2(s, t) : = R([s, t]^2) = \text{Var}(X_t - X_s) \]

If \(\varphi \) positive test function,

\[\langle \partial_s \partial_t R(s, t), \varphi \rangle \]
\[= \lim_{|\Pi| \to 0} \sum_{t_i \in \Pi} \varphi(t_i, t_i) \sigma^2(t_i, t_{i+1}) + \sum_{t_i, t_j \in \Pi} \varphi(t_i, t_j) R([t_i, t_{i+1}] \times [t_j, t_{j+1}]) \]
Observation:

- If X has **positively correlated increments** (equivalently: $\partial_s \partial_t R(s, t)$ positive measure away from diagonal D),
 $\Rightarrow \partial_s \partial_t R(s, t)$ positive Radon measure on $[0, T]^2$ (**Theorem of Schwartz**)

- Not clear for negatively correlated increments (or even correlation without sign), need **extra information**
Observation:

- If X has **positively correlated increments** (equivalently: $\partial_s \partial_t R(s, t)$ positive measure away from diagonal D),
 \[\Rightarrow \partial_s \partial_t R(s, t) \] positive Radon measure on $[0, T]^2$ (*Theorem of Schwartz*)

- Not clear for negatively correlated increments (or even correlation without sign), need **extra information**
Theorem (Friz, Gess, Gulisashvili, R.)

Assume: \(\mu = \partial_s \partial_t R(s, t) \) Radon measure on \((0, T)^2 \setminus D\) with decomposition \(\mu = \mu_+ - \mu_- \).

1. If \(\mu_- \) has finite mass, then \(R \) has finite (2D) 1-variation.
2. If

 (i) \(\mu_+ \) has finite mass,
 (ii) \(R([u, v] \times [s, t]) \geq 0 \) for all \([u, v] \subseteq [s, t]\),
 (iii) \(\sigma^2 \) has finite (1D) \(\rho \)-variation, \(\rho \in [1, \infty) \),

 then \(R \) has finite (2D) \(\rho \)-variation.

In particular, for \(\rho \in [1, 2) \), \(X \) can be lifted to process with trajectories in rough paths space (in the sense of Friz–Victoir).

- Condition (iii) first appeared in [Jain, Monrad; AOP ’83] in the context of sample path regularity.
Theorem (Friz, Gess, Gulisashvili, R.)

Assume: \(\mu = \partial_s \partial_t R(s, t) \) Radon measure on \((0, T)^2 \setminus D\) with decomposition \(\mu = \mu_+ - \mu_- \).

1. If \(\mu_- \) has finite mass, then \(R \) has finite (2D) 1-variation

2. If

 (i) \(\mu_+ \) has finite mass,
 (ii) \(R([u, v] \times [s, t]) \geq 0 \) for all \([u, v] \subseteq [s, t]\),
 (iii) \(\sigma^2 \) has finite (1D) \(\rho \)-variation, \(\rho \in [1, \infty) \),

then \(R \) has finite (2D) \(\rho \)-variation.

In particular, for \(\rho \in [1, 2) \), \(X \) can be lifted to process with trajectories in rough paths space (in the sense of Friz–Victoir).

- Condition (iii) first appeared in [Jain, Monrad; AOP ’83] in the context of sample path regularity.
Theorem (Friz, Gess, Gulisashvili, R.)

Assume: \(\mu = \partial_s \partial_t R(s, t) \) Radon measure on \((0, T)^2 \setminus D\) with decomposition \(\mu = \mu_+ - \mu_- \).

1. If \(\mu_- \) has finite mass, then \(R \) has finite (2D) 1-variation
2. If

 (i) \(\mu_+ \) has finite mass,
 (ii) \(R([u, v] \times [s, t]) \geq 0 \) for all \([u, v] \subseteq [s, t]\),
 (iii) \(\sigma^2 \) has finite (1D) \(\rho \)-variation, \(\rho \in [1, \infty) \),

 then \(R \) has finite (2D) \(\rho \)-variation.

In particular, for \(\rho \in [1, 2) \), \(X \) can be lifted to process with trajectories in rough paths space (in the sense of Friz–Victoir).

- Condition (iii) first appeared in [Jain, Monrad; AOP ’83] in the context of sample path regularity.
Theorem (Friz, Gess, Gulisashvili, R.)

Assume: $\mu = \partial_s \partial_t R(s, t)$ Radon measure on $(0, T)^2 \setminus D$ with decomposition $\mu = \mu_+ - \mu_-$.

1. If μ_- has finite mass, then R has finite $(2D)$ 1-variation
2. If

 (i) μ_+ has finite mass,
 (ii) $R([u, v] \times [s, t]) \geq 0$ for all $[u, v] \subseteq [s, t]$,
 (iii) σ^2 has finite $(1D)$ ρ-variation, $\rho \in [1, \infty)$,

then R has finite $(2D)$ ρ-variation.

In particular, for $\rho \in [1, 2)$, X can be lifted to process with trajectories in rough paths space (in the sense of Friz–Victoir).

- Condition (iii) first appeared in [Jain, Monrad; AOP ’83] in the context of sample path regularity.
Theorem (Friz, Gess, Gulisashvili, R.)

Assume: $\mu = \partial_s \partial_t R(s, t)$ Radon measure on $(0, T)^2 \setminus D$ with decomposition $\mu = \mu_+ - \mu_-.$

1. If μ_- has finite mass, then R has finite $(2D)$ 1-variation
2. If

 (i) μ_+ has finite mass,
 (ii) $R([u, v] \times [s, t]) \geq 0$ for all $[u, v] \subseteq [s, t],$
 (iii) σ^2 has finite $(1D) \rho$-variation, $\rho \in [1, \infty),$

 then R has finite $(2D) \rho$-variation.

In particular, for $\rho \in [1, 2),$ X can be lifted to process with trajectories in rough paths space (in the sense of Friz–Victoir).

- Condition (iii) first appeared in [Jain, Monrad; AOP ’83] in the context of sample path regularity.
Remarks:

- Stable under smooth perturbations $X \mapsto X + X^{\text{smooth}}$
- Same assumptions imply finite (1D) q-variation ($q = \frac{2}{\rho^{-1} + 1} < 2$) for paths in Cameron–Martin space (cf. [Friz, Gess, R; Preprint ’13])
- If $\sigma^2(s, t) = \sigma^2(t - s)$ (stationary increments) and σ^2 concave,

$$\partial^2_{s,t} R(s, t) = -\partial^2_{s,t} \sigma^2(t - s) = (\sigma^2)^{''}(t - s) \leq 0$$

$\Rightarrow \mu_+ = 0 \Rightarrow (i)$,

(ii) $\Leftrightarrow \sigma^2$ increasing on $[0, T]$,

(iii) fulfilled if σ^2 $1/\rho$-Hölder
Remarks:

- Stable under smooth perturbations \(X \mapsto X + X^{\text{smooth}} \)
- Same assumptions imply finite (1D) \(q \)-variation \((q = \frac{2}{\rho^{-1} + 1} < 2)\) for paths in Cameron–Martin space (cf. [Friz, Gess, R; Preprint ’13])
- If \(\sigma^2(s, t) = \sigma^2(t - s) \) (stationary increments) and \(\sigma^2 \) concave,

\[
\frac{\partial^2}{\partial s, t} R(s, t) = -\frac{\partial^2}{\partial s, t} \sigma^2(t - s) = (\sigma^2)''(t - s) \leq 0
\]

\[\Rightarrow \mu_{+} = 0 \Rightarrow (i),\]

(ii) \(\Leftrightarrow \sigma^2 \) increasing on \([0, T]\),

(iii) fulfilled if \(\sigma^2 \) \(1/\rho\)-Hölder
Remarks:

- Stable under smooth perturbations $X \mapsto X + X^{\text{smooth}}$
- Same assumptions imply finite (1D) q-variation $(q = \frac{2}{\rho - 1 + 1} < 2)$ for paths in Cameron–Martin space (cf. [Friz, Gess, R; Preprint ’13])
- If $\sigma^2(s, t) = \sigma^2(t - s)$ (stationary increments) and σ^2 concave,

$$\partial_{s,t}^2 R(s, t) = -\partial_{s,t}^2 \sigma^2(t - s) = (\sigma^2)''(t - s) \leq 0$$

$\Rightarrow \mu_+ = 0 \Rightarrow$ (i),

(ii) $\Leftrightarrow \sigma^2$ increasing on $[0, T]$,

(iii) fulfilled if σ^2 $1/\rho$-Hölder
Remarks:

- Stable under smooth perturbations $X \mapsto X + X^{\text{smooth}}$
- Same assumptions imply finite (1D) q-variation ($q = \frac{2}{\rho^{-1} + 1} < 2$) for paths in Cameron–Martin space (cf. [Friz, Gess, R; Preprint '13])
- If $\sigma^2(s, t) = \sigma^2(t - s)$ (stationary increments) and σ^2 concave,
 \[\partial_{s,t}^2 R(s, t) = -\partial_{s,t}^2 \sigma^2(t - s) = (\sigma^2)''(t - s) \leq 0 \]
 \[\Rightarrow \mu_+ = 0 \Rightarrow (i), \]
 (ii) $\Leftrightarrow \sigma^2$ increasing on $[0, T]$,
 (iii) fulfilled if σ^2 $1/\rho$-Hölder
Examples:

- fractional Brownian motion \((H > 1/4)\)
- bifractional Brownian motion (no stationary increments, no Volterra kernel)
- (fractional) bridges
- (fractional) Ornstein–Uhlenbeck processes
- ...
- random Fourier series!
Examples:

- fractional Brownian motion \((H > 1/4)\)
- bifractional Brownian motion (no stationary increments, no Volterra kernel)
- (fractional) bridges
- (fractional) Ornstein–Uhlenbeck processes
- ...
- random Fourier series!
Examples:

- fractional Brownian motion ($H > 1/4$)
- bifractional Brownian motion (no stationary increments, no Volterra kernel)
- (fractional) bridges
- (fractional) Ornstein–Uhlenbeck processes
- ...
- random Fourier series!
Outline

What are (Gaussian) rough paths?

Random Fourier series

Applications to SPDEs
Random Fourier series

\[\psi(t) = \frac{\alpha_0 Y_0}{2} + \sum_{k=1}^{\infty} \alpha_k Y^k \sin(k t) + \alpha_{-k} Y^{-k} \cos(k t) \in \mathbb{R}, \]

where \(\mathbb{E} Y^k Y^{-l} = \delta_{k,l} \) for all \(k, l \in \mathbb{Z} \).

Set \(\Delta a_k := a_{k+1} - a_k \), \(\Delta^2 := \Delta \circ \Delta \).

Theorem (Friz, Gess, Gulisashvili, R.)

If

1. \(a_k := \alpha_k^2 = O(|k|^{-(1+1/\rho)}) \) and decreasing for \(|k| \to \infty \), some \(\rho \geq 1 \)
2. \(\Delta^2(k^2 a_k) \leq 0 \) for all \(k \in \mathbb{Z} \)
3. \(k^3 |\Delta^2 a_k| + k^2 |\Delta a_k| = o(1) \) for \(|k| \to \infty \)

Then \(R_\psi \) has finite \(\rho \)-variation (actually, Hölder controlled finite \((1, \rho) \)-variation).
Random Fourier series

\[\psi(t) = \frac{\alpha_0 Y_0}{2} + \sum_{k=1}^{\infty} \alpha_k Y^k \sin(kt) + \alpha_{-k} Y^{-k} \cos(kt) \in \mathbb{R}, \]

where \(\mathbb{E} Y^k Y^{-l} = \delta_{k,l} \) for all \(k, l \in \mathbb{Z} \).

Set \(\Delta a_k := a_{k+1} - a_k \), \(\Delta^2 := \Delta \circ \Delta \).

Theorem (Friz, Gess, Gulisashvili, R.)

If

1. \(a_k := \alpha_k^2 = O(|k|^{-(1+1/\rho)}) \) and decreasing for \(|k| \to \infty \), some \(\rho \geq 1 \)
2. \(\Delta^2 (k^2 a_k) \leq 0 \) for all \(k \in \mathbb{Z} \)
3. \(k^3 |\Delta^2 a_k| + k^2 |\Delta a_k| = o(1) \) for \(|k| \to \infty \)

Then \(R_\psi \) has finite \(\rho \)-variation (actually, Hölder controlled finite \((1, \rho) \)-variation).
Random Fourier series

\[\psi(t) = \frac{\alpha_0 Y_0}{2} + \sum_{k=1}^{\infty} \alpha_k Y_k \sin(kt) + \alpha_{-k} Y^{-k} \cos(kt) \in \mathbb{R}, \]

where \(\mathbb{E} Y^k Y^{-l} = \delta_{k,l} \) for all \(k, l \in \mathbb{Z} \).

Set \(\Delta a_k := a_{k+1} - a_k \), \(\Delta^2 := \Delta \circ \Delta \).

Theorem (Friz, Gess, Gulisashvili, R.)

If

1. \(a_k := \alpha_k^2 = O(|k|^{-(1+1/\rho)}) \) and decreasing for \(|k| \to \infty \), some \(\rho \geq 1 \)
2. \(\Delta^2(k^2 a_k) \leq 0 \) for all \(k \in \mathbb{Z} \)
3. \(k^3 |\Delta^2 a_k| + k^2 |\Delta a_k| = o(1) \) for \(|k| \to \infty \)

Then \(R_\psi \) has finite \(\rho \)-variation (actually, Hölder controlled finite \((1, \rho)\)-variation).
Random Fourier series

\[\psi(t) = \frac{\alpha_0 Y_0}{2} + \sum_{k=1}^{\infty} \alpha_k Y^k \sin(kt) + \alpha_{-k} Y^{-k} \cos(kt) \in \mathbb{R}, \]

where \(\mathbb{E} Y^k Y^{-l} = \delta_{k,l} \) for all \(k, l \in \mathbb{Z} \).

Set \(\Delta a_k := a_{k+1} - a_k \), \(\Delta^2 := \Delta \circ \Delta \).

Theorem (Friz, Gess, Gulisashvili, R.)

If

1. \(a_k := \alpha_k^2 = O(|k|^{-(1+1/\rho)}) \) and decreasing for \(|k| \to \infty \), some \(\rho \geq 1 \)
2. \(\Delta^2(k^2 a_k) \leq 0 \) for all \(k \in \mathbb{Z} \)
3. \(k^3 |\Delta^2 a_k| + k^2 |\Delta a_k| = o(1) \) for \(|k| \to \infty \)

Then \(R_\psi \) has finite \(\rho \)-variation (actually, Hölder controlled finite \((1, \rho)\)-variation).
Proof

- By robustness results, suffices to show claim for
 $R(s, t) = K(t - s)$ where

\[K(x) = \sum_{k=0}^{\infty} a_k \cos(kx)\]

- From $\sigma^2(s, t) = 2(K(0) - K(t - s))$, suffices to find criteria for a_k such that K is convex and $1/\rho$ Hölder.
Corollary

Assume

- $\Psi = (\Psi^1, \ldots, \Psi^d)$ Gaussian, independent copies
- $a_k^i = |k|^{-(1+1/\rho_i)}$ and $\rho_1 \lor \ldots \lor \rho_d =: \rho < 2$

Then Ψ has a lift (in the sense of Friz–Victoir) to a rough paths space.

Result robust: if b_k “behaves similar to” a_k, same result applies for corresponding Fourier series.
Corollary

Assume

- \(\Psi = (\Psi^1, \ldots, \Psi^d) \) Gaussian, independent copies
- \(a_k^i = |k|^{-(1+1/\rho_i)} \) and \(\rho_1 \lor \ldots \lor \rho_d =: \rho < 2 \)

Then \(\Psi \) has a lift (in the sense of Friz–Victoir) to a rough paths space.

Result robust: if \(b_k \) “behaves similar to” \(a_k \), same result applies for corresponding Fourier series.
Approximation: truncated Fourier series

\[\psi^N(t) = \frac{\alpha_0 Y_0}{2} + \sum_{k=1}^{N} \alpha_k Y^k \sin(kt) + \alpha_{-k} Y^{-k} \cos(kt) \in \mathbb{R} \]

Proposition

Under the same assumptions, on a set of full measure,

\[\varrho(S_{\psi^N}(\omega), S_{\psi}(\omega)) = \mathcal{O}(N^{-\eta}) \]

for any \(\eta < \frac{1}{\rho} - \frac{1}{2} \).

Other approximations of \(\psi \) possible.
Approximation: truncated Fourier series

\[\psi^N(t) = \frac{\alpha_0}{2} Y_0 + \sum_{k=1}^{N} \alpha_k Y^k \sin(kt) + \alpha_{-k} Y^{-k} \cos(kt) \in \mathbb{R} \]

Proposition

Under the same assumptions, on a set of full measure,

\[\varrho(S_{\psi^N}(\omega), S_{\psi}(\omega)) = \mathcal{O}(N^{-\eta}) \]

for any \(\eta < \frac{1}{\rho} - \frac{1}{2} \).

Other approximations of \(\psi \) *possible.*
Approximation: truncated Fourier series

\[\psi^N(t) = \frac{\alpha_0 Y_0}{2} + \sum_{k=1}^{N} \alpha_k Y^k \sin(kt) + \alpha_{-k} Y^{-k} \cos(kt) \in \mathbb{R} \]

Proposition

Under the same assumptions, on a set of full measure,

\[\varrho(S_{\psi^N}(\omega), S_{\psi}(\omega)) = O(N^{-\eta}) \]

for any \(\eta < \frac{1}{\rho} - \frac{1}{2} \).

Other approximations of \(\psi \) possible.
Outline

What are (Gaussian) rough paths?

Random Fourier series

Applications to SPDEs
• $\Psi = (\Psi^1, \ldots, \Psi^d)$, each Ψ^i solves fractional stochastic heat equation

$$d\Psi^i_t = (-(-\Delta)^\alpha)\Psi^i_t \, dt + \sigma dW^i_t; \quad \Psi^i_0 = 0$$

where
- dW^i space-time white noise, uncorrelated
- spatial variable $x \in [0, 2\pi]$, time variable $t \in [0, T]$
- $(-(-\Delta)^\alpha)$ fractional Laplacian with periodic (P), Dirichlet (D) or Neumann (N) ∂-conditions ($\alpha = 1 \sim$ usual Laplacian Δ)

• can also consider stationary solution Ψ (with shifted spectrum of $(-\Delta)^\alpha$ if necessary)

• Ψ^i can be written as random Fourier series:
 - $\alpha_k^2 = -\alpha_{-k}^2$ in case of (P)
 - sine series in case of (D)
 - cosine series in case of (N)
What are (Gaussian) rough paths?

- $\psi = (\psi^1, \ldots, \psi^d)$, each ψ^i solves \textit{fractional stochastic heat equation}

\[
d\psi^i_t = (-(-\Delta)^\alpha)\psi^i_t \, dt + \sigma dW_t^i; \quad \psi^i_0 = 0
\]

where

- dW_t^i space-time white noise, uncorrelated
- spatial variable $x \in [0, 2\pi]$, time variable $t \in [0, T]$
- $(-(-\Delta)^\alpha)$ fractional Laplacian with periodic (P), Dirichlet (D) or Neumann (N) ∂-conditions ($\alpha = 1 \sim$ usual Laplacian Δ)

- can also consider stationary solution Ψ (with shifted spectrum of $(-\Delta)^\alpha$ if necessary)

- ψ^i can be written as random Fourier series:
 - $\alpha_k^2 = \alpha_{-k}^2$ in case of (P)
 - sine series in case of (D)
 - cosine series in case of (N)
\(\psi = (\psi^1, \ldots, \psi^d) \), each \(\psi^i \) solves fractional stochastic heat equation

\[
d\psi^i_t = \left(-(-\Delta)^\alpha\right)\psi^i_t \, dt + \sigma \, dW^i_t; \quad \psi^i_0 = 0
\]

where
- \(dW^i \) space-time white noise, uncorrelated
- spatial variable \(x \in [0, 2\pi] \), time variable \(t \in [0, T] \)
- \((-(-\Delta)^\alpha) \) fractional Laplacian with periodic (P), Dirichlet (D) or Neumann (N) \(\partial \)-conditions (\(\alpha = 1 \) \(\sim \) usual Laplacian \(\Delta \))

- can also consider stationary solution \(\Psi \) (with shifted spectrum of \((-\Delta)^\alpha \) if necessary)

- \(\psi^i \) can be written as random Fourier series:
 - \(\alpha_k^2 = \alpha_{-k}^2 \) in case of (P)
 - sine series in case of (D)
 - cosine series in case of (N)
Corollary

Consider stationary solution Ψ. Then for every

- $t \in [0, T]$
- $\alpha \in (3/4, 1]$

there exist lift of Ψ_t to a process with rough sample paths (in space) in the sense of Friz–Victoir. Moreover,

$$t \mapsto S_{\Psi_t}(\omega)$$

is continuous in rough-paths topology.
• **Application:** solution Ψ can be used as “building block” for solving non-linear (Burger’s-like) SPDE with additive noise:

$$
\begin{align*}
\frac{du}{dt}_t &= (-(-\Delta)^{\alpha})u_t \, dt + f^i(u) \, dt + \sum_{j=1}^{n} g^j(u) \partial_x u^j \, dt + \sigma dW_t^i;
\end{align*}
$$

u^i_0 smooth; $i = 1, \ldots, n$

where $(-(-\Delta)^{\alpha})$ fractional Laplacian with $(P), (D)$ or (N) ∂-conditions

• extends results from [Hairer; CPAM] (there: $\alpha = 1$, (P))

• SPDE has relevance in path sampling for diffusions
Application: solution Ψ can be used as “building block” for solving non-linear (Burger’s-like) SPDE with additive noise:

$$du^i_t = (-(-\Delta)^\alpha) u^i_t \, dt + f^i(u) \, dt + \sum_{j=1}^{n} g^i_j(u) \partial_x u^j \, dt + \sigma \, dW^i_t;$$

u^i_0 smooth; $i = 1, \ldots, n$

where $(-(-\Delta)^\alpha)$ fractional Laplacian with (P), (D) or (N) ∂-conditions

- extends results from [Hairer; CPAM] (there: $\alpha = 1$, (P))
- SPDE has relevance in path sampling for diffusions
• **Application**: solution Ψ can be used as “building block” for solving non-linear (Burger’s-like) SPDE with additive noise:

$$
\begin{align*}
\frac{du^i_t}{dt} &= (-(-\Delta)^\alpha)u^i_t \, dt + f^i(u) \, dt + \sum_{j=1}^{n} g^i_j(u) \partial_x u^j \, dt + \sigma dW^i_t; \\
\end{align*}
$$

u^i_0 smooth; $i = 1, \ldots, n$

where $(-(-\Delta)^\alpha)$ fractional Laplacian with (P), (D) or (N) ∂-conditions

• extends results from [Hairer; CPAM] (there: $\alpha = 1$, (P))

• SPDE has relevance in path sampling for diffusions
References

P. Friz, N. Victoir.
Differential equations driven by Gaussian signals.
AIHP, 2010.

P. Friz, B. Gess, A. Gulisashvili, S. Riedel.
Jain–Monrad criterion for rough paths.

P. Friz, B. Gess, S. Riedel.
On the variational regularity of Cameron–Martin paths.

M. Hairer.
Rough stochastic PDEs
Thank you for your attention.