An individual-based model for the Lenski experiment, and the deceleration of the relative fitness

Noemi Kurt

Joint work with

Adrián González Casanova, Anton Wakolbinger and Linglong Yuan

$H_\rho \chi \kappa \lambda \varepsilon \nu$, 21 July 2015
The Lenski experiment of long term evolution

- Population of E. coli bacteria in a glucose medium
- (Asexual) reproduction until glucose is deployed
- Sample from the population at the end of the day
- Repeat with sampled population under identical conditions

$N \approx 5 \cdot 10^9$

$N \approx 5 \cdot 10^7$

$N \approx 5 \cdot 10^8$

$N \approx 5 \cdot 10^6$

Noemi Kurt (TU Berlin) Lenski Experiment 21 July 2015
The Lenski experiment of long term evolution

Long term experiment

- So far this has been going on for more than 25 years, that is $\approx 60'000$ generations.
- Due to natural selection, the population has evolved, that is, adapted to the environment.
- *Samples* of the population have been stored at regular intervals.
- This allows to compare the unevolved founder strain of the population with the evolved present population!
Relative fitness of two strains

Measuring adaptation

- A population of size A_0 of the unevolved strain and a population of size B_0 of the evolved strain perform a *direct competition* in the glucose medium.
- The respective population sizes at the end of the day are denoted by A_1 and B_1.
- The (empirical) *relative fitness* $F(B|A)$ of strain B with respect to strain A is

$$F(B|A) = \frac{\log(B_1/B_0)}{\log(A_1/A_0)}.$$
Relative fitness over time

[Lenksi, Travisano, PNAS, 1994]

Fig. 4. Trajectory for mean fitness relative to the ancestor in one population of *E. coli* during 10,000 generations of experimental evolution. Each point is the mean of three assays. Curve is the best fit of a hyperbolic model.
Relative fitness over time

[**Wiser, Ribeck, Lenski, Science express 2013**]

Fig. 2. Comparison of hyperbolic and power-law models. (A) Hyperbolic (red) and power-law (blue) models fit to the set of mean fitness values (black symbols) from all 12 populations. (B) Fit of hyperbolic (solid red) and power-law (solid blue) models to data from first 20,000 generations only (filled symbols), with model predictions (dashed lines) and later data (open symbols). Error bars are 95% confidence limits based on the replicate populations.

\[
w(t) = (1 + ct)^{1/2g}
\]
Mathematical challenge

Goal
Understand the shape of the relative fitness curve, in particular the deceleration. Which mechanisms are involved?

Approach
Define an individual based *microscopic* model for the evolution of the bacterial population, and study the *macroscopic* relative fitness of the population over time. Show that in the limit of large populations, under a suitable time-rescaling and for a suitable choice of the parameters, the relative fitness process converges to a deterministic function.
Basic mechanisms of evolution

Darwin: Mutation and selection

- *Beneficial mutations* add to the reproductive success of an individual
- Beneficial mutations may or may not *fixate* in the population
- Fixation of beneficial mutations lead to an *increase* in the relative fitness of the population

Observations in the Lenski experiment: The relative fitness increases over time, in line with the elementary principles of Darwinian evolution. However, the increase gets slower and slower.

Why the slowdown?
Mechanisms of evolution in the Lenski experiment

Possible explanations for the deceleration

- “Clonal interference”: Several mutations interfere with each other, changing their respective probabilities of fixation
- “Epistasis”: Beneficial effects of different mutations depend on each other, “diminishing returns”
- The design of the experiment: Daily cycles, limited supply of resources, sampling procedure

In the biological literature, clonal interference and (in particular) **epistasis** are considered to be the predominant reasons for the observed slowdown.
An individual-based mathematical model

Information about the experiment

- At the beginning of each day there are N individuals.
- Within each day, individuals reproduce by binary splitting at a constant rate $r > 0$.
- The reproduction process will stop when the glucose has been consumed, which happens when there are $\approx \gamma N$ individuals, for some $\gamma > 1$.
- N individuals out of the $\approx \gamma N$ are uniformly sampled without replacement, to form the initial population at the next day.

Intraday and interday

- The dynamics has two parts: (Continuous) growth of the population within a day, and (discrete) sampling between days.
An individual-based mathematical model

One daily cycle, homogeneous population

- Fix parameters $r > 0$ and $\gamma > 1$.
- For $i \in \mathbb{N}$, let $(Y_t)_{t \geq 0}$ be the pure birth process with rate r started at $Y_0 = N$, that is, a Yule process with parameter r.
- Define a (deterministic) stopping time
 \[\sigma = \sigma(\gamma, r) := \inf \{ t > 0 : \mathbb{E}[Y_t] = \gamma N \} = \frac{\log \gamma}{r}. \]
- The *intraday process* is then $(Y_{t \wedge \sigma})_{t \geq 0}$.

Sampling rule

At the end of each day, we sample uniformly at random N individuals (out of the $Y_\sigma \approx \gamma N$) to start the population at the beginning of the next day.
Two types of individuals

- Assume that $0 < k < N$ individuals (the *mutants*) reproduce at rate $r + \varrho_N$, while the other $N - k$ individuals reproduce at rate r.
- $\varrho_N > 0$, we assume $\varrho_N \to 0$ as $N \to \infty$.
- Offspring have the reproduction rate of their parent.
- Stop the population growth at time $\sigma_k = \sigma_k(r, \gamma)$ when the expected total population size is γN.
- Sample uniformly at random N individuals for the next day.
- We are interested in the *interday process*

$$(K_i)_{i \in \mathbb{N}_0},$$

where K_i denotes the *number of mutants* in the population at the *beginning of day* $i \in \mathbb{N}_0$.

Note: σ_k is *decreasing* in k.
Selective advantage

Expected number of offspring

- If every individual has the same reproduction rate, every one of the \(N \) individuals at the beginning of day 0 has in expectation one offspring in the population at the beginning of day 1.
- In the two-types model of the previous slide, we have

\[
\mathbb{E}[K_1 | K_0 = 1] = 1 + \varrho_N \frac{\log \gamma}{r} + o(\varrho_N).
\]

Hence \(\varrho_N \) is connected to the \textit{selective advantage} of a (mutant) individual.
\((K_i)_{i \in \mathbb{N}_0} \) should be thought of as a \textit{slightly supercritical branching process}.

Noemi Kurt (TU Berlin)
Lenski Experiment
21 July 2015
14 / 26
Selective advantage

Expected number of offspring

In the two-types model we have

\[\mathbb{E}[K_1|K_0 = 1] = 1 + \varrho_N \frac{\log \gamma}{r} + o(\varrho_N). \]

More generally,

\[\mathbb{E}[K_1|K_0 = k] = 1 + \left(1 - \frac{k}{N}\right) \varrho_N \frac{\log \gamma}{r} + o(\varrho_N). \]

The selective advantage decreases in both \(k\) and \(r\). This reflects the design of the experiment: For fitter populations, the “Lenski days” are shorter – “diminishing returns”.
Probability and speed of fixation

- Define the *probability of fixation*\
 \[
 \pi_N := \mathbb{P}\left(\exists i \in \mathbb{N} : K_i = N \mid K_0 = 1 \right)
 \]

- If \(K_0 = 1 \), let\
 \[
 \tau^N := \inf\{ i \in \mathbb{N} : K_i \in \{0, N\} \}
 \]

Theorem 1 (Probability and speed of fixation)

Under the assumptions of our model, as \(N \to \infty \),

\[
\pi_N \sim \frac{\gamma}{\gamma - 1} \frac{\log \gamma}{r} \varrho_N.
\]

*Moreover, for any \(\delta > 0 \) there exists \(N_\delta \in \mathbb{N} \) such that for all \(N \geq N_\delta \)

\[
\mathbb{P}(\tau^N > \varrho_N^{1-3\delta}) \leq \left(\frac{7}{8}\right)^{\varrho_N^{-\delta}}.
\]
The weak mutation - moderate selection model

Now look at the basic model over long time scales, where many mutations may occur over time, and go to fixation/extinction.

Strength of mutation and selection (Assumption A)

i) Beneficial mutations add ϱ_N to the reproduction rate of the individual that suffers the mutation.

ii) In each generation, with probability μ_N there occurs a beneficial mutation. The mutation affects only one (uniformly chosen) individual, and every offspring of this individual also carries the mutation.

iii) There exists $0 < b < 1/2$, and $a > 3b$, such that $\mu_N \sim N^{-a}$ and $\varrho_N \sim N^{-b}$ as $N \to \infty$.

This implies

$$\mu_N \ll \varrho_N,$$

resp.

$$\mu_N^{-1} \gg \varrho_N^{-1},$$

which allows us to exclude clonal interference with high probability.
The process of relative fitness

Let $R_{i,j}, j = 1, \ldots, N$ denote the reproduction rates of the individuals present at the beginning of day i, and assume $R_{0,j} \equiv r_0$.

We define the *fitness* of the population at the beginning of day i *relative* to the initial population of day 0 as

$$F_i := \frac{\log \frac{1}{N} \sum_{j=1}^{N} e^{R_{i,j} t}}{\log e^{r_0 t}}$$

where t is a given time for which the two populations are allowed to grow together.

Relative fitness in homogeneous populations

If at day i the reproduction rate within the population is constant and equal to R_i, then

$$F_i = \frac{R_i}{r_0}.$$
The fitness process under Assumption A

Assumption A and Theorem 1 show that the fitness process looks like this:

\[x + \frac{q_N}{r_0} \]

In particular, we can treat the mutations successively, they don’t interact.
The limiting fitness process

Theorem 2 (Convergence of the relative fitness process)

Assume $R_{0,j} = r_0$ for $j = 1, \ldots, N$, and let $(F_i)_{i \in \mathbb{N}_0}$ be the process of relative fitness. Then under Assumption A, the sequence of processes $(F_{\lfloor (\varrho_N^2 \mu_N)^{-1} t \rfloor})_{t \geq 0}$ converges in distribution as $N \to \infty$ locally uniformly to the deterministic function

$$f(t) = \sqrt{1 + \frac{\gamma \log \gamma 2t}{\gamma - 1} \frac{r_0^2}{r_0^2}}, \ t \geq 0.$$

The time scale $\varrho_N^{-2} \mu_N^{-1}$ arises naturally, since mutations arrive at rate μ_N, and fixate with probability ϱ_N, increasing the reproduction rate by ϱ_N.
Qualitatively, the curve looks like in [Wiser et al. 2013]

- Our model does not include epistasis in the intraday part
- Due to the design of the experiment (shorter days due to increasing fitness) there is a resulting epistatic effect in the interday part of the model
Proof of Theorem 1

Consider the situation of a successful mutation, i.e. eventually $K_i = N$. Starting with $K_0 = 1$, the process $(K_i/N)_{i \in \mathbb{N}}$ undergoes three phases:

![Diagram showing three phases of a process](image)
Three phases

- Phase 2 is easy to take care of by a straightforward ODE approximation
- Phase 1 and Phase 3 can be taken care of by a coupling with suitable near-critical Galton-Watson processes
- For the Galton-Watson processes in question, the probability of fixation and the time until fixation can be calculated
- The difficult part is the construction of the coupling: Need to take dependence due to the sampling rule (without replacement) and the stopping rule (shorter days) into account.
Summary

- An individual based (microscopic) model for an evolving population in the set up of the Lenski experiment
- Macroscopic quantity: Relative fitness
- Convergence to a power function, qualitative behaviour in agreement with data
- No epistasis in the intraday population model, epistatic effect due to the design of the experiment, leads to the observed power law behaviour
Eυχαριστώ πολύ!